1
|
Luo W, Hu K, Chen Y, Wang L, Liu Y. Specific human CYP enzymes-dependent mutagenicity of tris(2-butoxyethyl) phosphate (an organophosphorus flame retardant) in human and hamster cell lines. Chem Biol Interact 2024; 397:111088. [PMID: 38823534 DOI: 10.1016/j.cbi.2024.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.
Collapse
Affiliation(s)
- Wenwen Luo
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Keqi Hu
- Department of Science and Education, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou, 510317, China
| | - Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Lin Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Chen Y, Yang Z, Zhou Z, Liu EJ, Luo W, He Z, Han W, Liu Y. Metabolism-dependent mutagenicity of two structurally similar tobacco-specific nitrosamines (N-nitrosonornicotine and N-nitrosoanabasine) in human cells, partially different CYPs being activating enzymes. Toxicology 2024; 504:153774. [PMID: 38490321 DOI: 10.1016/j.tox.2024.153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 μM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 μM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 μM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 μM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China; School of Clinical Technology, Sichuan Vocational College of Health and Rehabilitation, 3 Deming Road, Zigong, Sichuan Province 643000, China
| | - Zhao Zhou
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Ellery J Liu
- International High School Section, Guangzhou Experimental Foreign Language School, 599 Guanghuayi Road, Guangzhou 510440, China
| | - Wenwen Luo
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zhini He
- Research Center of Food Safety and Health, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Weili Han
- Department of inspection and quarantine, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
3
|
Wang H, Fan Q, Liang Q, Wu Y, Ye Z, Wu H, Sun Q, Tang H, Liu Y, Liu Q, Chen Y. Human CYP1A1-activated aneugenicity of aflatoxin B1 in mammalian cells and its combined effect with benzo(a)pyrene. Chem Biol Interact 2024; 392:110923. [PMID: 38382706 DOI: 10.1016/j.cbi.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin and a proven human carcinogen that requires metabolic activation, known by cytochrome P450 (CYP) 1A2 and 3A4. Previous evidence showed that AFB1 is activated by human recombinant CYP1A1 expressed in budding yeast. Yet, the toxicity, in particular the genotoxicity of the reactive metabolites formed from AFB1 remains unclear. Humans could be exposed to both AFB1 and benzo(a)pyrene (BaP) simultaneously, thus we were interested in their combined genotoxic effects subsequent to metabolic activation by CYP1A1. In this study, molecular docking of AFB1 to human CYP1A1 indicated that AFB1 is valid as a substrate. In the incubations with AFB1 in human CYP1A1-expressed microsomes, AFM1 as a marking metabolite of AFB1 was detected. Moreover, AFB1 induced micronucleus formation in a Chinese hamster V79-derived cell line and in a human lung epithelial BEAS-2B cell line, both expressing recombinant human CYP1A1, V79-hCYP1A1 and 2B-hCYP1A1 cells, respectively. Immunofluorescence of centromere protein B stained micronuclei was dominant in AFB1-treated BEAS-2B cells exposed to AFB1, suggesting an aneugenic effect. Moreover, AFB1 elevated the levels of ROS, 8-OHdG, AFB1-DNA adduct, and DNA breaks in 2B-hCYP1A1 cells, compared with those in the parental BEAS-2B cells. Meanwhile, AFB1 increased CYP1A1, RAD51, and γ-H2AX protein levels in 2B-hCYP1A1 cells, which were attenuated by the CYP1A1 inhibitor bergamottin. Co-exposure of AFB1 with BaP increased 8-OHdG, RAD51, and γ-H2AX levels (indicating DNA damage). In conclusion, AFB1 could be activated by human CYP1A1 for potent aneugenicity, which may be further enhanced by co-exposure to BaP.
Collapse
Affiliation(s)
- Huanhuan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qin Fan
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Liang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zhongming Ye
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Haipeng Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Qizhan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
4
|
Hu K, Tu H, Xie J, Yang Z, Li Z, Chen Y, Liu Y. Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds. TOXICS 2023; 11:495. [PMID: 37368596 DOI: 10.3390/toxics11060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The composition of amino acids forming the active site of a CYP enzyme is impactful in its substrate selectivity. For CYP2E1, the role of PHE residues in the formation of effective binding orientations for its aromatic substrates remains unclear. In this study, molecular docking and molecular dynamics analysis were performed to reflect the interactions between PHEs in the active site of human CYP2E1 and various aromatic compounds known as its substrates. The results indicated that the orientation of 1-methylpyrene (1-MP) in the active site was highly determined by the presence of PHEs, PHE478 contributing to the binding free energy most significantly. Moreover, by building a random forest model the relationship between each of 19 molecular descriptors of polychlorinated biphenyl (PCB) compounds (from molecular docking, quantum mechanics, and physicochemical properties) and their human CYP2E1-dependent mutagenicityas established mostly in our lab, was investigated. The presence of PHEs did not appear to significantly modify the electronic or structural feature of each bound ligand (PCB), instead, the flexibility of the conformation of PHEs contributed substantially to the effective binding energy and orientation. It is supposed that PHE residues adjust their own conformation to permit a suitablly shaped cavity for holding the ligand and forming its orientation as favorable for a biochemical reaction. This study has provided some insights into the role of PHEs in guiding the interactive adaptation of the active site of human CYP2E1 for the binding and metabolism of aromatic substrates.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Science and Education, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou 510317, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Jiayi Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zongying Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zihuan Li
- Department of Science and Education, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou 510317, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yijing Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yungang Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Wang Y, Chen Y, Chen Y, Luo W, Liu Y. Induction of clastogenesis and gene mutations by carbamazepine (at its therapeutically effective serum levels) in mammalian cells and the dependence on human CYP2B6 enzyme activity. Arch Toxicol 2023; 97:1753-1764. [PMID: 36995427 DOI: 10.1007/s00204-023-03489-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Carbamazepine (CBZ, an antiepileptic) is metabolized by multiple CYP enzymes to its epoxide and hydroxides; however, whether it is genotoxic remains unclear. In this study, molecular docking (CBZ to CYPs) and cytogenotoxic toxicity assays were employed to investigate the activation of CBZ for mutagenic effects, in various mammalian cell models. Docking results indicated that CBZ was valid as a substrate of human CYP2B6 and 2E1, while not for CYP1A1, 1A2, 1B1 or 3A4. In the Chinese hamster (V79) cell line and its derivatives genetically engineered for the expression of human CYP1A1, 1A2, 1B1, 2E1 or 3A4 CBZ (2.5 ~ 40 μM) did not induce micronucleus, while in human CYP2B6-expressing cells CBZ significantly induced micronucleus formation. In a human hepatoma C3A cell line, which endogenously expressed CYP2B6 twofold higher than in HepG2 cells, CBZ induced micronucleus potently, which was blocked by 1-aminobenzotriazole (inhibitor of CYPs) and ticlopidine (specific CYP2B6 inhibitor). In HepG2 cells CBZ did not induce micronucleus; however, pretreatment of the cells with CICTO (CYP2B6 inducer) led to micronucleus formation by CBZ, while rifampicin (CYP3A4 inducer) or PCB126 (CYP1A inducer) did not change the negative results. Immunofluorescent assay showed that CBZ selectively induced centromere-free micronucleus. Moreover, CBZ induced double-strand DNA breaks (γ-H2AX elevation, by Western blot) and PIG-A gene mutations (by flowcytometry) in C3A (threshold being 5 μM, lower than its therapeutic serum concentrations, 17 ~ 51 μM), with no effects in HepG2 cells. Clearly, CBZ may induce clastogenesis and gene mutations at its therapeutic concentrations, human CYP2B6 being a major activating enzyme.
Collapse
|
6
|
Xie J, Tu H, Chen Y, Chen Z, Yang Z, Liu Y. Triphenyl phosphate induces clastogenic effects potently in mammalian cells, human CYP1A2 and 2E1 being major activating enzymes. Chem Biol Interact 2023; 369:110259. [PMID: 36372259 DOI: 10.1016/j.cbi.2022.110259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 μM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 μM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 μM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 μM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Yang Z, Yu H, Tu H, Chen Z, Hu K, Jia H, Liu Y. Influence of aryl hydrocarbon receptor and sulfotransferase 1A1 on bisphenol AF-induced clastogenesis in human hepatoma cells. Toxicology 2022; 471:153175. [PMID: 35395335 DOI: 10.1016/j.tox.2022.153175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Bisphenol compounds (BPs) are ubiquitously existing pollutants. Recent evidence shows that they may be activated by human CYP1A1 for clastogenic effects; however, factors that influence/mediate CYP1A1-activated 4,4'-(hexafluoroisopropylidene)diphenol (BPAF) toxicity, particularly the aryl hydrocarbon receptor (AhR), sulfotransferase (SULT) 1A1 [known to conjugate 2,2-bis(4-hydroxyphenol)-propane (BPA)] and reactive oxygen species (ROS), remain unclear. In this study, a human hepatoma (HepG2) cell line was genetically engineered for the expression of human CYP1A1 and SULT1A1, producing HepG2-hCYP1A1 and HepG2-hSULT1A1, respectively. They were used in the micronucleus test and γ-H2AX analysis (Western blot) (indicating double-strand DNA breaks) with BPAF; the role of AhR in mediating BPAF toxicity was investigated by coexposure of AhR modulators in HepG2 and its derivative C3A (with no genetic modifications but enhanced CYP expression). The results indicated induction of micronuclei by BPAF (≥ 2.5 µM, for 2-cell cycle) in HepG2-hCYP1A1 and C3A, while inactive in HepG2 and HepG2-hSULT1A1; however, BPAF induced micronuclei in HepG2 pretreated with 3,3',4,4',5-pentachlorobiphenyl (PCB126, AhR activator), and BAY-218 (AhR inhibitor) blocked the effect of BPAF in C3A. In HepG2-hCYP1A1 BPAF selectively induced centromere-free micronuclei (immunofluorescent assay) and double-strand DNA breaks. In HepG2 cells receiving conditional medium from BPAF-HepG2-hCYP1A1 incubation micronuclei were formed, while negative in HepG2-hSULT1A1. Finally, the intracellular levels of ROS, superoxide dismutase and reduced glutathione in C3A and HepG2-hCYP1A1 exposed to BPAF were all moderately increased, while unchanged in HepG2 cells. In conclusion, like other BPs BPAF is activated by human CYP1A1 for potent clastogenicity, and this effect is enhanced by AhR while alleviated by SULT1A1.
Collapse
Affiliation(s)
- Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hongwei Tu
- Guangdong Provincial Center for Disease Control and Prevention, Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hansi Jia
- The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Futian District, Shenzhen 518033, China.
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
8
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Song M, Wang Y, Chen Z, Gao H, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated genotoxicity of 2,2',4,4'-tetrabromobiphenyl ether in mammalian cells. CHEMOSPHERE 2022; 291:132784. [PMID: 34742755 DOI: 10.1016/j.chemosphere.2021.132784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are a group of persistent organic pollutants with endocrine-disrupting, neurotoxic, tumorigenic and DNA-damaging activities. They are hydroxylated by human liver microsomal CYP enzymes, however, their mutagenicity remains unknown. In this study, 2,2',4,4'-tetrabromobiphenyl ether (BDE-47, relatively abundant in human tissues) was investigated for micronuclei induction and DNA damage in mammalian cells. The results indicated that BDE-47 up to 80 μM under a 6 h/18 h (exposure/recovery, covering 2 cell cycles) regime did not induce micronuclei in V79-Mz and V79-derived cell lines expressing human CYP1A1 or 1A2, while it was moderately positive in human CYP2B6-, 2E1-and 3A4-expressing cell lines (V79-hCYP2B6, V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4-hOR, respectively). Following 24 h exposure, BDE-47 induced micronuclei in V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4 cells at increased potencies. In the human hepatoma (HepG2) cells BDE-47 (48 h exposure) was inactive up to 40 μM, however, pretreatment of the cells with ethanol (0.2%, v:v, inducer of CYP2E1) or rifampicin (10 μM, inducer of CYP3A4) led to significant micronuclei formation by BDE-47; pretreatment with bisphenol AF (100 nM) also potentiated BDE-47-induced micronuclei formation (which was blocked by a CYP2E1 inhibitor trans-1,2-dichloroethylene or a CYP3A inhibitor (ketoconazole). Immunofluorescent staining of centromere protein B with the micronuclei formed by BDE-47 in HepG2 cells pretreated with ethanol or rifampicin demonstrated selective formation of centromere-containing micronuclei. The increased phosphorylation of both histones H2AX and H3 in HepG2 by BDE-47 also indicated an aneugenic potential. Therefore, this study suggests that BDE-47 is an aneugen activated by several human CYP enzymes.
Collapse
Affiliation(s)
- Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongbin Gao
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Chen Z, Xie J, Li Q, Hu K, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated clastogenicity of 2-ethylhexyl diphenyl phosphate (a flame retardant) in mammalian cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117527. [PMID: 34380225 DOI: 10.1016/j.envpol.2021.117527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a common flame retardant and environmental pollutant, exposing humans with endocrinal disrupting potentials. Its mutagenicity, especially following metabolism, remains unclear. In this study, molecular docking analysis indicated that EHDPP was a potential substrate for several human CYP enzymes except for CYP1A1. Among V79-derived cell lines genetically engineered for the expression of each CYP, EHDPP (6 h exposure/18 h recovery) did not induce micronuclei in the V79 or V79-derived cells expressing human CYP1A1, however, it was positive in V79-derived cell lines expressing human CYP2E1, 3A4, and 2B6. In a human hepatoma (HepG2) cell line, EHDPP (48 h exposure) moderately induced micronuclei, which was blocked by 1-aminobenzotriazole (ABT, 60 μM, inhibitor of CYPs); pretreating HepG2 cells with bisphenol AF, another organic pollutant as inducer of CYPs (0.1 μM for 16 h), significantly potentiated micronuclei formation by EHDPP, threshold being decreased from 10 to 1.25 μM. This effect was blocked by ABT, drastically reduced by ketoconazole (inhibiting CYP3A expression/activity), and moderately inhibited by trans-1,2-dichloroethylene (selective CYP2E1 inhibitor). Immunofluorescent centromere protein B staining indicated that EHDPP-induced micronuclei in V79-derived cell lines expressing human CYP2E1 and 3A4 were predominantly centromere-negative, and that in HepG2 cells pretreated with bisphenol AF (for inducing multiple CYPs) were purely centromere-negative. In bisphenol AF-pretreated HepG2 cells EHDPP potently induced DNA breaks, as indicated by the comet assay and Western blot analysis of γ-H2AX. In conclusion, our study suggests that EHDPP is potently clastogenic, following activation by several human CYP enzymes, CYP3A4 being a major one.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Jiayi Xie
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Qing Li
- Department of Dietetics, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Avenue, Guangzhou, 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Yu H, Chen Z, Hu K, Yang Z, Song M, Li Z, Liu Y. Potent Clastogenicity of Bisphenol Compounds in Mammalian Cells-Human CYP1A1 Being a Major Activating Enzyme. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15267-15276. [PMID: 33201683 DOI: 10.1021/acs.est.0c04808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bisphenols (BPs) are environmental pollutants with relevant DNA damage in human population; however, they are generally inactive in standard mutagenicity assays, possibly due to insufficient metabolic activation. In this study, induction of micronuclei and double-strand DNA breaks by BPA, BPF, and BPS in Chinese hamster V79-derived cell lines expressing various human CYP enzymes and a human hepatoma (C3A) (metabolism-proficient) cell line were investigated. Molecular docking of BPs to human CYPs indicated some substrate-enzyme potentials, including CYP1A1 for each compound, which did not induce micronuclei in V79-derived cell lines expressing human CYP1A2, 2E1, or 3A4 but became positive in human CYP1A1-expressing (V79-hCYP1A1) cells. In V79-hCYP1A1 and C3A cells, all compounds induced double-strand DNA breaks and micronuclei formation, which were blocked/significantly attenuated by 1-aminobenzotriazole (CYP inhibitor) or 7-hydroxyflavone (selective CYP1A1 inhibitor). Coexposure of C3A cells to pentachlorophenol (sulfotransferase 1 inhibitor) or ketoconazole (UDP-glucuronosyltransferase 1A inhibitor) potentiated micronuclei induction by each compound, with thresholds lowered from 2.5-5.0 to 0.6-1.2 μM. Immunofluorescence staining of centromere protein B with micronuclei formed in C3A cells by each compound indicated pure clastogenic effects. In conclusion, BPs are potently clastogenic in mammalian cells, which require activation primarily by human CYP1A1 and are negatively modulated by phase II metabolism.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| |
Collapse
|
12
|
Li Z, Yu H, Song M, Glatt H, Liu J, Liu Y. Potent aneugenicity of 1-methylpyrene in human cells dependent on metabolic activation by endogenous enzymes. Arch Toxicol 2020; 95:703-713. [PMID: 33057863 DOI: 10.1007/s00204-020-02933-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023]
Abstract
1-Methylpyrene (1-MP) is a common environmental pollutant and animal carcinogen. After sequential activation by cytochromes P450 and sulfotransferases, it induced gene mutations and micronuclei in mammalian cells. The type of micronuclei formed, entire chromosomes or fragments, was not analysed. In this study, 1-MP and its primary metabolite, 1-hydroxymethylpyrene (1-HMP), were investigated for the induction of centromere-positive and -negative micronuclei in the human hepatoma cell line HepG2 and its derivative C3A, expressing relevant enzymes at higher levels. Under a short-exposure (9 h)/long-recovery regime (2 cell cycles in total), 1-MP and 1-HMP provided negative test results in HepG2 cells. However, they induced micronuclei in C3A cells, the effect being blocked by 1-aminobenzotriazole (inhibitor of cytochromes P450s) and reduced by pentachlorophenol (inhibitor of sulfotransferases). Immunofluorescence staining of centromere protein B in the micronuclei revealed purely clastogenic effects under this regime. Unexpectedly, 1-MP and 1-HMP at concentrations 1/5-1/4 of that required for micronuclei formation led to mitotic arrest and spindle aberrations, as detected by immunofluorescence staining of β- and γ-tubulin. Following extended exposure (72 h, 2 cell cycles, no recovery), damage to the spindle apparatus and centrosomes was detected at even lower concentrations, with concurrent formation of micronuclei. At low concentrations (1-8 µM 1-MP, 0.25-0.5 µM 1-HMP), the micronuclei induced were unexceptionally centromere-positive. Thus, the chromosome-damaging mechanism of 1-MP was regime and concentration dependent: potently aneugenic under persistent exposure, while clastogenic at higher concentrations following a short-exposure/long-recovery regime. This is a convincing evidence for the existence of metabolic activation-dependent aneugens.
Collapse
Affiliation(s)
- Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Department of Food Safety, Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Shenzhen, 518055, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Hu K, Yu H, Li Z, Jin G, Jia H, Song M, Liu Y. Human CYP2E1-activated mutagenicity of dioxin-like PCBs 105 and 118-Experimental data consistent with molecular docking results. Toxicology 2020; 437:152438. [PMID: 32199159 DOI: 10.1016/j.tox.2020.152438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants with human carcinogenicity. Many lower chlorinated and non-dioxin-like PCBs have been observed to be mutagenic following activation by human CYP2E1, while activation of dioxin-like (DL-) PCBs by this enzyme has never been evidenced. In this study, each DL-PCB was analyzed by molecular docking to human CYP2E1 protein for predicting a substrate interaction. All compounds demonstrated high affinities with the active site of human CYP2E1, binding energy being -8.7 ∼ -9.7 kcal/mol. However, most compounds demonstrated ligand-heme distances as ≥ 6.8 Å, while the values for 2,3,3',4,4'- (PCB 105) and 2,3',4,4',5-pentachlorobiphenyl (PCB 118) were 5.3 and 5.4 Å, respectively (valid for electron transfer). Experimentally, both PCB 105 and 118 induced micronuclei in a V79-derived cell line engineered for expression of human CYP2E1 at low micromolar concentrations, while inactive or weakly positive in V79-Mz control cells; these effects were blocked or reduced by 1-aminobenzotriazole, a suicide CYP inhibitor. However, DL-PCBs 77, 81 and 126 were all negative in both cell lines. In a human hepatoma (C3A) cell line, PCB 105 and 118 induced micronuclei marginally, while with ethanol pretreatment (to stabilize CYP2E1) both compounds induced micronuclei efficiently, and co-exposure to trans-1,2-dichloroethylene (a selective CYP2E1 inhibitor) led to clearly negative results with both compounds. Finally, both PCB 105 and 118 induced PIG-A gene mutations in C3A cells, which was blocked by trans-1,2-dichloroethylene. In summary, in silico and experimental results consistently suggest that DL- PCBs 105 and 118 may be activated by human CYP2E1 for mutagenic activities.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Guifang Jin
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hansi Jia
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Chen Y, Wu Y, Xiao W, Jia H, Glatt H, Shi M, Liu Y. Human CYP1B1-dependent genotoxicity of dioxin-like polychlorinated biphenyls in mammalian cells. Toxicology 2020; 429:152329. [DOI: 10.1016/j.tox.2019.152329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023]
|
15
|
Chen Y, Liu Y. Non-coplanar and coplanar polychlorinated biphenyls potentiate genotoxicity of aflatoxin B1 in a human hepatocyte line by enhancing CYP1A2 and CYP3A4 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:945-954. [PMID: 31159144 DOI: 10.1016/j.envpol.2018.12.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and hazardous to human health. Aflatoxin B1 (AFB1) is a strong carcinogen dependent on activation by cytochrome P450 (CYP) 1A2 and 3A4. Humans in some regions may be exposed to both PCBs and AFB1. Since PCBs are CYP inducers, we were interested in their combined genotoxicity. In this study, the effects of non-coplanar 2,3,3'-tri- (PCB 20), 2,2'5,5'-tetra- (PCB 52), 2,3,3',4'-tetrachlorobiphenyl (PCB 56), and coplanar 3,3',4,4',5-pentachlorobiphenyl (PCB 126) on protein levels of CYP1A1, 1A2, and 3A4, and nuclear receptors AhR, CAR and PXR in a human hepatocyte (L-02) line were investigated. Moreover, the combined effects of each PCB and AFB1 for induction of micronuclei and double-strand DNA breaks (indicated by an elevation of γ-H2AX) were analyzed. The results indicated that PCBs 20, 52 and 56 reduced the expression of AhR, while elevated that of CAR and PXR, with thresholds at low micromolar concentrations. However, they were less potent than PCB 126, which was active at sub-nanomolar levels. Overexpression of human splice variant CAR 3 in the cells increased CYP1A2 and 3A4 levels, which were further enhanced by each non-coplanar PCB, suggesting a role of CAR in modulating CYPs. Pretreatment of cells with each test PCB potentiated both micronuclei formation and DNA damage induced by AFB1. This study suggests that both non-coplanar and coplanar PCBs may enhance the genotoxicity of AFB1, through acting on various nuclear receptors; the potentiation of AFB1 genotoxicity by PCBs and the potential health implications may deserve concerns and further investigation.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|