1
|
Vergauwen L, Bajard L, Tait S, Langezaal I, Sosnowska A, Roncaglioni A, Hessel E, van den Brand AD, Haigis AC, Novák J, Hilscherová K, Buławska N, Papaioannou N, Renieri E, Spilioti E, Spyropoulou A, Gutleb AC, Holbech H, Nikolopoulou D, Jacobs MN, Knapen D. A 2024 inventory of test methods relevant to thyroid hormone system disruption for human health and environmental regulatory hazard assessment. OPEN RESEARCH EUROPE 2024; 4:242. [PMID: 39931575 PMCID: PMC11809485 DOI: 10.12688/openreseurope.18739.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 02/13/2025]
Abstract
Thyroid hormone system disruption (THSD) is a growing concern in chemical hazard assessment due to its impact on human and environmental health and the scarce methods available for assessing the THSD potential of chemicals. In particular, the general lack of validated in silico and in vitro methods for assessing THS activity is of high concern. This manuscript provides an inventory of test methods relevant to THSD. Building on the Organisation for Economic Co-operation and Development (OECD) Guidance Document 150 and recent international developments, we highlight progress in in silico and in vitro methods, as well as in vivo assays. The provided inventory categorizes available methods according to the levels of the OECD Conceptual Framework, with an assessment of the validation status of each method. At Level 1, 12 in silico models that have been statistically validated and are directly related to THSD have been identified. At Level 2, 67 in vitro methods have been listed including those assessed in key initiatives such as the European Union Network of Laboratories for the Validation of Alternative Methods (EU-NETVAL) validation study to identify potential thyroid disruptors. At Levels 3-5, THSD-sensitive endpoints are being included in existing fish-based OECD Test Guidelines to complement amphibian assays. In total, the inventory counts 108 entries comprising established methods (e.g., OECD Test Guidelines) as well as citable methods that are under further development and in some cases are ready for validation or in the initial stages of validation. This work aims to support the ongoing development of strategies for regulatory hazard assessment, such as integrated approaches to testing and assessment (IATAs), for endocrine disruptors, addressing critical gaps in the current testing landscape for THSD in both human and environmental health contexts.
Collapse
Affiliation(s)
- Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, 2610, Belgium
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Ingrid Langezaal
- European Commission Joint Research Centre Ispra, Ispra, Lombardy, 21027, Italy
| | - Anita Sosnowska
- Faculty of Chemistry, University of Gdansk, Gdańsk, 80-308, Poland
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Lombardy, 20156, Italy
| | - Ellen Hessel
- National Institute for Public Health and the Environment, Bilthoven, Utrecht, 3721, The Netherlands
| | - Annick D van den Brand
- National Institute for Public Health and the Environment, Bilthoven, Utrecht, 3721, The Netherlands
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Natalia Buławska
- Faculty of Chemistry, University of Gdansk, Gdańsk, 80-308, Poland
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, 570 01, Greece
| | - Elisavet Renieri
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, 570 01, Greece
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Attica, 145 61, Greece
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Attica, 145 61, Greece
| | - Arno C Gutleb
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology, Belvaux, 4422, Luxembourg
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Dimitra Nikolopoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Attica, 145 61, Greece
| | - Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards, Harwell Innovation Campus, UK Health Security Agency, Chilton, OX11 0RQ, UK
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
2
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE, Umar AB. Identification of estrogen receptor agonists among hydroxylated polychlorinated biphenyls using classification-based quantitative structure-activity relationship models. Curr Res Toxicol 2024; 6:100158. [PMID: 38435023 PMCID: PMC10907392 DOI: 10.1016/j.crtox.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two binary logistic regression models were developed to identify active ER agonists among hydroxylated polychlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid identification of ERα and ERβ agonists among OH-PCB congeners.
Collapse
Affiliation(s)
- Lukman K. Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
3
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Development of binary classification models for grouping hydroxylated polychlorinated biphenyls into active and inactive thyroid hormone receptor agonists. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:267-284. [PMID: 37139950 DOI: 10.1080/1062936x.2023.2207039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Some adverse effects of hydroxylated polychlorinated biphenyls (OH-PCBs) in humans are presumed to be initiated via thyroid hormone receptor (TR) binding. Due to the trial-and-error approach adopted for OH-PCB selection in previous studies, experiments designed to test the TR binding hypothesis mostly utilized inactive OH-PCBs, leading to considerable waste of time, effort and other material resources. In this paper, linear discriminant analysis (LDA) and binary logistic regression (LR) were used to develop classification models to group OH-PCBs into active and inactive TR agonists using radial distribution function (RDF) descriptors as predictor variables. The classifications made by both LDA and LR models on the training set compounds resulted in an accuracy of 84.3%, sensitivity of 72.2% and specificity of 90.9%. The areas under the ROC curves, constructed with the training set data, were found to be 0.872 and 0.880 for LDA and LR models, respectively. External validation of the models revealed that 76.5% of the test set compounds were correctly classified by both LDA and LR models. These findings suggest that the two models reported in this paper are good and reliable for classifying OH-PCB congeners into active and inactive TR agonists.
Collapse
Affiliation(s)
- L K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - A Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - G A Shallangwa
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - S E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Xing W, Gu W, Liang M, Wang Z, Fan D, Zhang B, Wang L. Sex-specific effect of urinary metabolites of polycyclic aromatic hydrocarbons on thyroid profiles: results from NHANES 2011-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47168-47181. [PMID: 36735133 DOI: 10.1007/s11356-023-25693-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The current study aims to evaluate the associations between 10 urinary polycyclic aromatic hydrocarbon (PAH) metabolites and thyroid profiles. The levels of 10 PAH metabolites and thyroid profiles were obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2012. Spearman analysis was utilized to evaluate the correlation coefficients among these 10 PAH metabolites. Multivariate linear and logistic regression models assessed the relationship between urinary PAH metabolite levels, thyroid hormones, and thyroid autoantibodies after adjusting potential confounders. Stratified analysis by gender was performed to evaluate sex-specific effect of urinary metabolites of PAH on thyroid profiles. One thousand six hundred forty-five eligible adult participants with complete research data were enrolled. Of note, the concentrations of the majority of urinary PAH metabolites were remarkedly higher in females compared with males. 2-hydroxyfluorene (2-FLU) was associated with higher total triiodothyronine (T3) levels in whole population (β = 2.113, 95% CI 0.339-3.888). In males, positive associations were observed in 1-hydroxynaphthalene (1-NAP) and free thyroxine (T4) (β = 0.0002, 95% CI 0.0000-0.0004). 2-FLU was also found positively associated with total T3 (β = 2.528, 95% CI 0.115-4.940) in male subjects. While in female participants, 2-hydroxynaphthalene (2-NAP) was associated with free T3 (β = 0.002, 95% CI 0.000-0.005). 2-FLU was associated with total T3 (β = 2.683, 95% CI 0.038-5.328), free T3 (β = 0.050, 95% CI 0.012-0.087), and total T4 (β = 0.195, 95% CI 0.008-0.382). 2-Hydroxyphenanthrene (2-OHP), 1-hydroxypyrene (1-HP), and 9-hydroxyfluorene (9-FLU) were all positively related to total T3 levels, and the corresponding coefficients were 16.504, 6.587, and 3.010. 9-FLU was also associated with free T3 (β = 0.049, 95% CI 0.008-0.090). No statistical significances were found between PAH metabolite levels and increased prevalence of increased thyroglobulin antibody (TgAb)/thyroid peroxidase antibody (TPOAb) when PAH metabolites were treated as continuous variables. Meanwhile, in the quartile analyses, increased prevalence of elevated TgAb was observed in participants with quartile 2 2-NAP compared with lowest quartile (OR = 1.753, 95% CI 1.021-3.008). Male subgroup analyses indicated that increased prevalence of elevated TgAb was observed in higher quartile of 1-NAP, 2-NAP, and 3-hydroxyfluorene (3-FLU). Increased prevalence of elevated TPOAb was associated with higher 2-NAP quartile. However, in subgroup analysis of females, no statistical significances were found between PAH quartiles and increased TgAb/TPOAb. Significant correlations were found among these 10 PAH metabolites. In conclusion, the cross-sectional study indicated that exposure to PAH might disturb the concentrations of thyroid hormones and thyroid autoantibodies. It is noteworthy that significant differences existed in males and females. Further prospective research is warranted to explore the causal relationship and underlying mechanism of PAH exposure on thyroid dysfunction.
Collapse
Affiliation(s)
- Weilong Xing
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China.
| | - Wen Gu
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Mengyuan Liang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Zhen Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Deling Fan
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Bing Zhang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Lei Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| |
Collapse
|
5
|
Yang R, Ye Y, Chen Y, Yang Y, Yang L, Yao Y, Zhong W, Zhu L. First Insight into the Formation of In Vivo Transformation Products of 2-Ethylhexyl diphenyl phosphate in Zebrafish and Prediction of Their Potential Toxicities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:451-462. [PMID: 36515636 DOI: 10.1021/acs.est.2c05506] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a frequently detected organophosphorus flame retardant in the environment, 2-ethylhexyl diphenyl phosphate (EHDPHP) is vulnerable to biotransformation, while the transformation mechanisms and potential toxicities of its transformation products remain unclear. In the present study, in vivo transformation products of EHDPHP in exposed zebrafish for 21d were analyzed by suspect screening and identified by mass spectrometry. Fifteen metabolites were identified, including 10 phase I and 5 phase II products with monohydroxylated products being primary, among which 5-OH-EHDPHP was the most predominant. Two sulfation products and one terminal desaturation metabolite of EHDPHP were reported for the first time. A density functional calculation coupled with molecular docking disclosed that the specific conformation of EHDPHP docked in the protein pockets favored the primary formation of 5-OH-EHDPHP, which was fortified to be a more suitable biomarker of EHDPHP exposure. The in vitro tests suggested that EHDPHP transformation took place not only in liver but also in intestine, where gut microbes played an important role. Due to lack of standards, in silico toxicity prediction combined with molecular docking indicated that several metabolites potentially cause higher toxicities than EHDPHP. The results provide deep insight into the potential health risks due to specific in vivo transformation of EHDPHP.
Collapse
Affiliation(s)
- Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yongxiu Ye
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Ying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Di Ciaula A, Bonfrate L, Noviello M, Portincasa P. Thyroid Function: A Target for Endocrine Disruptors, Air Pollution and Radiofrequencies. Endocr Metab Immune Disord Drug Targets 2023; 23:1032-1040. [PMID: 34503436 DOI: 10.2174/1871530321666210909115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Thyroid diseases, including congenital hypothyroidism, thyroiditis, and childhood thyrotoxicosis, are progressively increasing. The incidence of thyroid cancer in children and adolescents has also increased in recent decades, mirroring the trends observed in adults. These epidemiologic trends develop in parallel with the rising costs associated with diagnosis and treatment of thyroid diseases. Both genetic and environmental factors are involved in these diseases, and a number of widely diffused toxic chemicals of anthropogenic origin can impair thyroid function and make thyroid cancer worse. Synthetic substances persistently contaminate environmental matrices (i.e., air, soil, water) and the food chain and bio-accumulate in humans, starting from in utero life. Environmental toxins such as air pollutants, endocrine disruptors, and high-frequency electromagnetic fields can act on common targets through common pathways, combined mechanisms, and with trans-generational effects, all of which contribute to thyroid damage. Both experimental and epidemiologic observations show that mechanisms of damage include: modulation of synthesis; transportation and metabolism of thyroid hormones; direct interference with hormone receptors: modulation of gene expression; and autoimmunity. We should not underestimate the available evidence linking environmental pollutants with thyroid disease, cancer included, since toxic substances increasingly diffuse and thyroid hormones play a key role in maintaining systemic metabolic homeostasis during body development. Thus, primary prevention measures are urgently needed in particular to protect children, the most exposed and vulnerable subjects.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
- International Society of Doctors for Environment (ISDE), Arezzo, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Noviello
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
7
|
Little CC, Barlow J, Alsen M, van Gerwen M. Association between polychlorinated biphenyl exposure and thyroid hormones: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:248-267. [PMID: 36515092 DOI: 10.1080/26896583.2022.2149213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Purpose: To conduct a comprehensive meta-analysis investigating the association between polychlorinated biphenyl (PCB) exposure and serum thyroid hormone levels among adults. Methods: Eleven studies met inclusion criteria for analysis following systematic search of PubMed, Embase, and Scopus databases. Of these, 7 studies measured exposure by the total sum of PCB congeners (∑PCB), 1 study measured individual PCB congener levels, and 3 studies measured both ∑PCB levels and PCB congener levels. Correlation coefficients (r) were extracted from each study. Summary estimates were calculated for ∑PCB levels and PCB congeners reported by 2 or more studies: PCB 28, 52, 101, 105, 118, 138, 153, and 180, using random effects model. Results: Significant negative correlation was found between ∑PCBs and T3 (r: -0.09; 95% CI: -0.17, -0.02) and FT3 (r: -0.24; 95% CI: -0.36, -0.12). Congener-specific analysis found T3 to be negatively correlated with PCB-153 (r: -0.19; 95% CI: -0.34, -0.03) and PCB-180 (r: -0.14; 95% CI: -0.26, -0.01), whereas TSH was positively correlated with PCB-105 (r: 0.15; 95% CI: 0.02, 0.28). Conclusions: The present study is the first meta-analysis to investigate the association between PCB exposure and thyroid hormone dysfunction among adults. Results suggest a significant association between PCB exposure and thyroid hormone dysregulation.
Collapse
Affiliation(s)
- Christine C Little
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Barlow
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Chen P, Wang R, Chen G, An B, Liu M, Wang Q, Tao Y. Thyroid endocrine disruption and hepatotoxicity induced by bisphenol AF: Integrated zebrafish embryotoxicity test and deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153639. [PMID: 35131240 DOI: 10.1016/j.scitotenv.2022.153639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol AF (BPAF) is an emerging contaminant prevalent in the environment as one of main substitutes of bisphenol A (BPA). It was found that BPAF exhibited estrogenic effects in zebrafish larvae in our previous study, while little is known about its effects on the thyroid and liver. A 7 d zebrafish embryotoxicity test was conducted to study the potential thyroid disruption and hepatotoxicity of BPAF. BPAF decreased levels of thyroid hormones and deiodinases but increased expressions of transthyretin at 12.5 and 125 μg/L after 7 d exposure, indicating that both the metabolism and transport of thyroid hormones were perturbed. The thyroid hormone receptor (TR) levels decreased significantly upon exposure to ≥12.5 μg/L BPAF, implying that BPAF acts as a TR antagonist, which coincided well with the prediction from the Direct Message Passing Neural Network. The liver impairment (mainly cell necrosis of hepatocytes) and apoptosis were triggered by 125 μg/L and ≥12.5 μg/L BPAF respectively, accompanied by the increased activities of caspase 3 and caspase 9. Thus BPAF might not be a safe alternative to BPA given the thyroid and liver toxicity. DMPNN appears useful to screen for thyroid disrupting activity from molecular structures.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Baihui An
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ming Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
9
|
Lin S, Zhao B, Ying Z, Fan S, Hu Z, Xue F, Zhang Q. Residual characteristics and potential health risk assessment of polychlorinated biphenyls (PCBs) in seafood and surface sediments from Xiangshan Bay, China (2011–2016). Food Chem 2020; 327:126994. [DOI: 10.1016/j.foodchem.2020.126994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023]
|
10
|
Lühmann K, Lille-Langøy R, Øygarden L, Kovacs KM, Lydersen C, Goksøyr A, Routti H. Environmental Pollutants Modulate Transcriptional Activity of Nuclear Receptors of Whales In Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5629-5639. [PMID: 32212695 DOI: 10.1021/acs.est.9b06952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study reports the transcriptional activity of fin (Balaenoptera physalus) and blue whale (Balaenoptera musculus) peroxisome proliferator-activated receptor γ (PPARG), glucocorticoid receptor (GR), and thyroid hormone receptor β (THRB), when exposed to 14 persistent organic pollutants (so-called "legacy" persistent organic pollutants (POPs)) and a synthetic mixture of POPs, using GAL4-UAS-based in vitro luciferase reporter gene assays. Polychlorinated biphenyls (PCBs) had both agonistic and antagonistic effects on PPARG and GR, and mainly antagonistic, except for PCB153, effects on THRB. 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites had mainly antagonistic effects on all of the receptors, except for o,p'-DDT. Given that the ligand-binding domain (LBD) of PPARG is the same in killer whales, white whales, polar bears, and humans, and that GR-LBD is identical in killer whales and minke whales and that the LBD of THRB is the same in killer whales, white whales, and humans, it is likely that the results of this study are representative for these other species as well. It is important to note that several environmental pollutants modulated the transcriptional activity of tested nuclear receptors at environmentally relevant concentrations for whales.
Collapse
Affiliation(s)
- Katharina Lühmann
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | - Roger Lille-Langøy
- Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | - Lene Øygarden
- Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| |
Collapse
|
11
|
Jayaprada T, Hu J, Zhang Y, Feng H, Shen D, Geekiyanage S, Yao Y, Wang M. The interference of nonylphenol with bacterial cell-to-cell communication. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113352. [PMID: 31672371 DOI: 10.1016/j.envpol.2019.113352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The interference of nonylphenol (NP) with humans and animals, especially in hormone systems, has been well-studied. There is rarely any record of its effect on bacteria, which dominate in various environments. In our study, we employed Pseudomonas aeruginosa PAO1 as a model microorganism and took its common lifestyle biofilm, mainly regulated by quorum sensing (QS), as a cut-in point to investigate the effect of NP (1, 5, 10 mg L-1) on bacteria. The results showed that more than 5 mg L-1 of NP did interfere with biofilm formation and affected bacterial QS. In detail, the LasI/R circuit, but not the RhlI/R circuit, was considerably obstructed. The decrease in lasI and lasR expression resulted in a significant reduction in N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL) signals and the downstream production of elastases. Docking results indicated the binding of NP with LasR protein, simulating the binding of 3OC12-HSL with LasR protein, which explained the obstruction of the LasIR circuit. We concluded that NP competed with 3OC12-HSL and blocked 3OC12-HSL binding with the LasR protein, resulting in a direct interference in bacterial biofilm formation. This is the first report of NP interference with bacterial signaling, which is not only helpful to understand the effect of NP on various ecosystems, but is also beneficial to enrich our knowledge of inter-kingdom communication.
Collapse
Affiliation(s)
- Thilini Jayaprada
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingming Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yunyun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Sudarshanee Geekiyanage
- Department of Agricultural Biology, University of Ruhuna, Mapalana, Kamburupitiya, 81100, Sri Lanka
| | - Yanlai Yao
- Institute of Environment Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
12
|
Buha Djordjevic A, Antonijevic E, Curcic M, Milovanovic V, Antonijevic B. Endocrine-disrupting mechanisms of polychlorinated biphenyls. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Sainath SB, André A, Castro LFC, Santos MM. The evolutionary road to invertebrate thyroid hormone signaling: Perspectives for endocrine disruption processes. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:124-138. [PMID: 31136851 DOI: 10.1016/j.cbpc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (THs) are the only iodine-containing hormones that play fundamental roles in chordates and non-chordates. The chemical nature, mode of action and the synthesis of THs are well established in mammals and other vertebrates. Although thyroid-like hormones have been detected in protostomes and non-chordate deuterostomes, TH signaling is poorly understood as compared to vertebrates, particularly in protostomes. Therefore, the central objective of this article is to review TH system components and TH-induced effects in non-vertebrate chordates, non-chordate deuterostomes and protostomes based on available genomes and functional information. To accomplish this task, we integrate here the available knowledge on the THs signaling across non-vertebrate chordates, non-chordate deuterostomes and protostomes by considering studies encompassing TH system components and physiological actions of THs. We also address the possible interactions of thyroid disrupting chemicals and their effects in protostomes and non-chordate deuterostomes. Finally, the perspectives on current and future challenges are discussed.
Collapse
Affiliation(s)
- S B Sainath
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India.
| | - A André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|