1
|
Kumar SV, Babu DP, Ponkumar S, Uthrakumar R, Kaviyarasu K, Nivetha A, Ahmad MS, Alam MW. Transient Photocurrent Responses of Sr 1-xCe xTiO 3 Perovskites Under Visible Light Illumination for Photovoltaic Applications. LUMINESCENCE 2024; 39:e4918. [PMID: 39533834 DOI: 10.1002/bio.4918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
The objective of this study was to synthesize strontium titanate (Sr1-xCexTiO3) doped with Ce3+ by solid state method. Its crystalline structure is Sr1-xCexTiO3, and its bandgap ranges from ~3.3 to ~2.7 eV. In the photoluminescence of samples excited at 288 nm, the maximum emission of blue light was observed at 380 and 390 nm. Photocatalytic results show that dye molecules have a high absorbance, whereas their surface area is large. According to a line sweep voltammetric plot (LSV), illumination increases the current density by 0.4 μA cm-2 compared with dark conditions. It was demonstrated that the material changed from n-type to p-type under doping. Chronoamperometry spectra were obtained for sample Sr1-xCexTiO3 (x = 0, 0.005, 0.01, 0.03, 0.05) when an electrical voltage of 0.8 V was applied versus NHE. The plots indicate an increase in the current density under "light ON" conditions and a decrease under "light OFF" conditions. As Ce3+ concentration increases, the photocurrent increases until about 3 mol%, after which it decreases abruptly.
Collapse
Affiliation(s)
- S Vinod Kumar
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - D Prakash Babu
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - S Ponkumar
- Department of Physics, Thiruvalluvar Government Arts College, Namakkal, Tamil Nadu, India
| | - R Uthrakumar
- Department of Physics, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - A Nivetha
- Post Graduate and Research Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| | - Muhammad Sheraz Ahmad
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
2
|
The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review. Catalysts 2022. [DOI: 10.3390/catal12121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing energy demands and rapid industrialization drove the attention towards a sustainable living. The methods to a adopt renewable source of energy has made the field of heterogeneous photocatalysis so famous. The photocatalytic hydrogen production seems to be an answer for our future energy crisis. In this regard, alkaline earth metal titanates with a perovskite structure are one of the in demand materials these days. Among these, strontium titanates (SrTiO3) play an important role and have shown a potential, especially in the field of hydrogen production. This review summarizes the significance of (SrTiO3) in photocatalytic water splitting, to produce hydrogen and the photocatalytic degradation of the pollutants from the waste water. Different synthesis methods used for preparing SrTiO3 are also discussed.
Collapse
|
3
|
Li Z, Zhang X, Chen P, Shen Z, Wang R, He Q, Zhang S, Chang S, Tian J, Zhang H. Cu 2O/SrTi 1-xCr xO 3 Heterojunction Photocatalyst for the Efficient Degradation of Isopropanol under Visible Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13841-13848. [PMID: 36325981 DOI: 10.1021/acs.langmuir.2c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A heterojunction of Cu2O and Cr-doped SrTiO3 (SrTi1-xCrxO3) was designed for selective photocatalytic isopropanol (IPA) oxidation under visible light irradiation. The photocatalytic oxidation of IPA was measured in a fixed-bed reactor. Cr dopants can increase the light absorption and improve the activity of the catalyst. The formation of the Cu2O/SrTi1-xCrxO3 heterojunction can further broaden the absorption range of lights and dramatically increase the photocatalytic activity for selective oxidation of IPA. The 3% Cu2O/SrTi0.99Cr0.01O3 catalyst can fully convert ∼1000 ppm IPA under illumination in 2 h. The selectivity of acetone is ∼100%. The yield is 83 and 4 times higher than that using SrTiO3 and SrTi0.99Cr0.01O3 as catalysts, respectively. By measuring the ultraviolet-visible absorption spectra and Mott-Schottky plots, we obtained the band structure of the heterojunction, which shows that the conduction and valence bands of Cu2O are higher than those of SrTi1-xCrxO3, therefore facilitating the separation and transfer of photogenerated electrons and holes. In addition, electron paramagnetic resonance spectroscopy and radical trapping tests reveal that the generation of hydroxyl and superoxide leads to photocatalytic oxidation of IPA by the heterojunction photocatalyst.
Collapse
Affiliation(s)
- Zhonghua Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
- Department of Chemical Engineering, Northwest University, Xi'an710069, China
| | - Xuefan Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Ping Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Rui Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Qiya He
- Department of Chemical Engineering, Northwest University, Xi'an710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Shuo Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Shaozhong Chang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Jiaming Tian
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
- Department of Chemical Engineering, Northwest University, Xi'an710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
4
|
Yu Y, Liu S, Wang H, Zhang S, Wang N, Jiang W, Liu C, Ding W, Zhang Z, Dong C. Design, synthesis and photocatalytic performance of A32Ti8Sn8Nb4Ta4Me8O96 (A=Ba, Sr; Me=Fe, Ga) perovskite structure high entropy oxides. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Zhu J, Zhang Y, Shen L, Li J, Li L, Zhang F, Zhang Y. Hydrothermal synthesis of Nb5+-doped SrTiO3 mesoporous nanospheres with greater photocatalytic efficiency for Cr(VI) reduction. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Synthesis of SrTiO3 from celestite and rutile by mechanical activation assisted Solid-State reaction. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Investigation on SrTiO3 nanoparticles as a photocatalyst for enhanced photocatalytic activity and photovoltaic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
9
|
Abdel Maksoud MIA, Fahim RA, Bedir AG, Osman AI, Abouelela MM, El-Sayyad GS, Elkodous MA, Mahmoud AS, Rabee MM, Al-Muhtaseb AH, Rooney DW. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:519-562. [DOI: 10.1007/s10311-021-01351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 09/02/2023]
Abstract
AbstractThe rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron oxides, spinel ferrites, and perovskite oxides for water remediation. We present structural, optical, and magnetic properties. Magnetic oxides are also promising photocatalysts for the degradation of organic pollutants. Antimicrobial activities and adsorption of heavy metals and radionucleides are also discussed.
Collapse
|
10
|
Modification of ZnFe2O4 by conjugated polyvinyl chloride derivative for more efficient photocatalytic reduction of Cr(VI). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Kumar V, Wanchoo RK, Toor AP. Photocatalytic Reduction and Crystallization Hybrid System for Removal and Recovery of Lead (Pb). Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Vivek Kumar
- Dr. S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Ravinder K. Wanchoo
- Dr. S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Amrit P. Toor
- Dr. S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Ge T, Jiang Z, Shen L, Li J, Lu Z, Zhang Y, Wang F. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118401] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Manipulating the Structure and Characterization of Sr1−xLaxTiO3 Nanocubes toward the Photodegradation of 2-Naphthol under Artificial Solar Light. Catalysts 2021. [DOI: 10.3390/catal11050564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Effective La-doped SrTiO3 (Sr1−xLaxTiO3, x = 0–0.1 mol.% La-doped) nanocubes were successfully synthesized by a hydrothermal method. The influence of different La dopant concentrations on the physicochemical properties of the host structure of SrTiO3 was fully characterized. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed that the Sr2+ in the crystal lattice of SrTiO3 was substituted by La3+. As a result, the absorption region of the Sr1−xLaxTiO3 could be extended to visible light. Scanning electron microscopy (SEM) images confirmed that their morphologies are associated with an increased surface area and an increased La-doping concentration. The decrease in the photoluminescence (PL) intensity of the dopant samples showed more defect levels created by the dopant La+3 cations in the SrTiO3 structure. The photocatalytic activities of Sr1−xLaxTiO3 were evaluated with regard to the degradation of 2-naphthol at typical conditions under artificial solar light. Among the candidates, Sr0.95La0.05TiO3 exhibited the highest photocatalytic performance for the degradation of 2-naphthol, which reached 92% degradation efficiency, corresponding to a 0.0196 min−1 degradation rate constant, within 180 minutes of irradiation. Manipulating the structure of Sr1−xLaxTiO3 nanocubes could produce a more effective and stable degradation efficiency than their parent compound, SrTiO3. The parameters remarkably influence the Sr1−xLaxTiO3 nanocubes’ structure, and their degradation efficiencies were also studied. Undoubtedly, substantial breakthroughs of Sr1−xLaxTiO3 nanocube photocatalysts toward the treatment of organic contaminants from industrial wastewater are expected shortly.
Collapse
|
14
|
Saravanan G, Ramachandran K, Gajendiran J, Gnanam S. Experimental investigation of structural, surface, optical and electrical properties of gallium sesquioxide doped tausonite compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Wei Z, Zheng N, Dong X, Zhang X, Ma H, Zhang X, Xue M. Green and controllable synthesis of one-dimensional Bi 2O 3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI). CHEMOSPHERE 2020; 257:127210. [PMID: 32502738 DOI: 10.1016/j.chemosphere.2020.127210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BiOI nanosheets have been successfully deposited on the porous Bi2O3 nanorobs via a one-pot precipitation method. The physicochemical features of the as-prepared materials were characterized in detail by a series of techniques, and the results revealed that BiOI nanosheets were evenly distributed on the porous Bi2O3 nanorobs. Because of higher photogenerated electron-hole pairs separation efficiency and the larger specific surface area compared to the pristine Bi2O3 and BiOI, the 50%Bi2O3/BiOI composite exhibited significantly enhanced photocatalytic activity for Cr(VI) reduction under visible light irradiation, and the reduction rate constant was 0.02002 min-1, which was about 27.4 and 2.6 times higher than that of pure Bi2O3 (0.00073 min-1) and BiOI (0.00769 min-1), respectively. Moreover, the 50%Bi2O3/BiOI composite also possessed the excellent photochemical stability and recyclability, thereby facilitating its wastewater treatment application.
Collapse
Affiliation(s)
- Zhiping Wei
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Nan Zheng
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Xiaoli Dong
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China.
| | - Xiufang Zhang
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Hongchao Ma
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Xinxin Zhang
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Mang Xue
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| |
Collapse
|
16
|
Qu Z, Liu Z, Wu A, Piao C, Li S, Wang J, Song Y. Preparation of a coated Z-scheme and H-type SrTiO3/(BiFeO3@ZnS) composite photocatalyst and application in degradation of 2,4-dichlorophenol with simultaneous conversion of Cr(VI). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Garba ZN, Zhou W, Zhang M, Yuan Z. A review on the preparation, characterization and potential application of perovskites as adsorbents for wastewater treatment. CHEMOSPHERE 2020; 244:125474. [PMID: 31812058 DOI: 10.1016/j.chemosphere.2019.125474] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Perovskite are among the popular materials utilized in many areas of modern industrialization because of their low price, high stability, excellent oxidation activity, adsorptive, catalytic, optical, magnetic, electronic and ferroelectric properties. Over the years, widespread usage of perovskite nanoparticles has been reported due to its various applications which include an environmental catalyst, fuel cells, chemical sensors, magnetic materials, oxygen permeable membranes and adsorbents for wastewater treatment. Various synthetic methods such as the sol-gel method, proteic method, Pechini method, combustion, co-precipitation, and chelating precursor method have been applied in producing perovskites. Therefore, this review assembles the current knowledge on the processes involved in the preparation of perovskites, their characterizations and potential applications in wastewater treatment. Challenges and future opportunities of perovskite-based materials are discussed as well as obstacles against their extensive uses. Conclusions have also been drawn proposing a few suggestions for future research.
Collapse
Affiliation(s)
- Zaharaddeen N Garba
- College of Materials Science and Engineering, Fujian Agriculture and Forestry University, China; Department of Chemistry, Ahmadu Bello University Zaria, Nigeria.
| | - Weiming Zhou
- College of Materials Science and Engineering, Fujian Agriculture and Forestry University, China
| | - Mingxi Zhang
- College of Materials Science and Engineering, Fujian Agriculture and Forestry University, China
| | - Zhanhui Yuan
- College of Materials Science and Engineering, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
18
|
Wu HH, Chang CW, Lu D, Maeda K, Hu C. Synergistic Effect of Hydrochloric Acid and Phytic Acid Doping on Polyaniline-Coupled g-C 3N 4 Nanosheets for Photocatalytic Cr(VI) Reduction and Dye Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35702-35712. [PMID: 31532604 DOI: 10.1021/acsami.9b10555] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, graphitic carbon nitride (g-C3N4) nanosheets (CNns) were modified using polyaniline (PANI) codoped with an inorganic (hydrochloric acid, HCl) and an organic (phytic acid, PA) acid. Our results revealed that these samples exhibited extended visible-light absorption and a three-dimensional (3D) hierarchical structure with a large specific surface area. They also inhibited photoluminescence emission, reduced electrical resistance, and provided abundant free radicals, resulting in high photocatalytic performance. The PANI/g-C3N4 sample demonstrated outstanding photocatalytic activity of a Cr(VI) removal capacity of 4.76 mg·min-1·gc-1, which is the best record for the reduction of a 100 ppm K2Cr2O7 solution. Moreover, g-C3N4 coupled with PANI monotonically doped with HCl or PA did not demonstrate increased activity, suggesting that the codoping of HCl and PA plays a significant role in enhancing the performance. The improved photocatalytic activity of PANI/g-C3N4 can be attributed to the interchain and intrachain doping of PA and HCl over PANI, respectively, to create a 3D connected network and synergistically increase the electrical conductivity. Therefore, new insights into g-C3N4 coupled with PANI and codoped by HCl and PA may have excellent potential for the design of g-C3N4-based compounds for efficient photocatalytic reactions.
Collapse
Affiliation(s)
- Hsiao-Han Wu
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| | - Chien-Wei Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8503 , Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science , Tokyo Institute of Technology , 2-12-1-NE-2 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Chechia Hu
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| |
Collapse
|
19
|
Powerful combination of g-C 3N 4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications. Adv Colloid Interface Sci 2019; 272:101999. [PMID: 31421455 DOI: 10.1016/j.cis.2019.101999] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
Abstract
The utilization of solar energy with photocatalytic technology has been considered a good solution to alleviate environmental pollution and energy shortage. Constructing 2D/2D heterostructure photocatalysts with layered double hydroxide (LDH) and graphitic carbon nitride (g-C3N4) is an effective approach to attain high performance in solar photocatalysis. This paper provides a review of recent studies about 2D/2D LDH/g-C3N4 heterostructure photocatalysts. Main strategies for constructing the desired 2D/2D heterojunction are summarized. The planar structure of LDH and g-C3N4 offers a shorter transfer distance for charge carriers and reduces electron-hole recombination in the bulk phase. The face-to-face contact between the two materials can promote the charge transfer across the heterostructure interface, thus improving the electron-hole separation efficiency. The performance and mechanisms of LDH/g-C3N4 photocatalysts in hydrogen production, CO2 reduction, and organic pollutant degradation are analyzed and discussed. Incorporating reduced graphene oxide or Ag nanoparticles into LDH/g-C3N4 heterojunction and fabricating calcined LDH/g-C3N4 composites are effective strategies to further facilitate charge transfer at the interface of LDH and g-C3N4 and improve the absorption capacity for visible light. This review is expected to provide basic insights into the design of 2D/2D LDH/g-C3N4 heterojunctions and their applications in solar photocatalysis.
Collapse
|
20
|
Zeng W, Cao S, Qiao L, Zhu A, Ma Q, Xu X, Chen Y, Pan J. Boosting charge separation of Sr2Ta2O7 by Cr doping for enhanced visible light-driven photocatalytic hydrogen generation. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00506d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light driven Cr-doped Sr2Ta2O7 nanosheets with enhanced photocatalytic performance were prepared by a facile hydrothermal method.
Collapse
Affiliation(s)
- Weixuan Zeng
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha
- P. R. China
| | - Sheng Cao
- School of Physical Science and Technology
- Guangxi University
- Nanning 530004
- P. R. China
| | - Lulu Qiao
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha
- P. R. China
| | - Anquan Zhu
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha
- P. R. China
| | - Quanyin Ma
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha
- P. R. China
| | - Xiewen Xu
- College of Material Science and Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources
- College of Urban and Environmental Sciences
- Hunan University of Technology
- Zhuzhou
- P. R. China
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha
- P. R. China
| |
Collapse
|