1
|
Running L, Cristobal JR, Karageorgiou C, Camdzic M, Aguilar JMN, Gokcumen O, Aga DS, Atilla-Gokcumen GE. Investigating the Mechanism of Neurotoxic Effects of PFAS in Differentiated Neuronal Cells through Transcriptomics and Lipidomics Analysis. ACS Chem Neurosci 2024; 15:4568-4579. [PMID: 39603830 DOI: 10.1021/acschemneuro.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that bioaccumulate in tissues and pose risks to human health. Increasing evidence links PFAS to neurodegenerative and behavioral disorders, yet the underlying mechanisms of their effects on neuronal function remain largely unexplored. In this study, we utilized SH-SY5Y neuroblastoma cells, differentiated into neuronal-like cells, to investigate the impact of six PFAS compounds─perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorodecanesulfonic acid (PFDS), 8:2 fluorotelomer sulfonate (8:2 FTS), and 8:2 fluorotelomer alcohol (8:2 FTOH)─on neuronal health. Following a 30 μM exposure for 24 h, PFAS accumulation ranged from 40-6500 ng/mg of protein. Transcriptomic analysis revealed 721 differentially expressed genes (DEGs) across treatments (padj < 0.05), with 11 DEGs shared among all PFAS exposures, indicating potential biomarkers for neuronal PFAS toxicity. PFOA-treated cells showed downregulation of genes involved in synaptic growth and neural function, while PFOS, PFDS, 8:2 FTS, and 8:2 FTOH exposures resulted in the upregulation of genes related to hypoxia response and amino acid metabolism. Lipidomic profiling further demonstrated significant increases in fatty acid levels with PFDA, PFDS, and 8:2 FTS and depletion of triacylglycerols with 8:2 FTOH treatments. These findings suggest that the neurotoxic effects of PFAS are structurally dependent, offering insights into the molecular processes that may drive PFAS-induced neuronal dysfunction.
Collapse
Affiliation(s)
- Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Judith R Cristobal
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Michelle Camdzic
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - John Michael N Aguilar
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Olasupo A, Corbin DR, Shiflett MB. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133830. [PMID: 38387180 DOI: 10.1016/j.jhazmat.2024.133830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health. However, they have remained refractive in different compartments of the environment. Their bioavailability is majorly a function of different anthropogenic activities. Landfilling and incineration are among the earliest classical means of environmental remediation of waste; however, they are not sustainable due to the seepage of contaminants in landfills, the release of toxic gases into the atmosphere and energy requirements during incineration. Other advanced waste destruction technologies have been explored for the degradation of these recalcitrant pollutants; although, some are efficient, but are limited by high amounts of energy consumption, the use of organic solvents and hazardous chemicals, high capital and operational cost, and lack of public trust. Thus, this study has systematically reviewed different contaminant degradation technologies, their efficiency, and feasibility. Finally, based on techno-economic feasibility, non-invasiveness, efficiency, and environmental friendliness; radiation technology can be considered a viable alternative for the environmental remediation of contaminants in all environmental matrices at bench-, pilot-, and industrial-scale.
Collapse
Affiliation(s)
- Ayo Olasupo
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - David R Corbin
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - Mark B Shiflett
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States.
| |
Collapse
|
3
|
Nguyen TV, Trang PN, Kumar A. Understanding PFAS toxicity through cell culture metabolomics: Current applications and future perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108620. [PMID: 38579451 DOI: 10.1016/j.envint.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, pose significant challenges to ecosystems and human health. While cell cultures have emerged as new approach methodologies (NAMs) in ecotoxicity research, metabolomics is an emerging technique used to characterize the small-molecule metabolites present in cells and to understand their role in various biological processes. Integration of metabolomics with cell cultures, known as cell culture metabolomics, provides a novel and robust tool to unravel the complex molecular responses induced by PFAS exposure. In vitro testing also reduces reliance on animal testing, aligning with ethical and regulatory imperatives. The current review summarizes key findings from recent studies utilizing cell culture metabolomics to investigate PFAS toxicity, highlighting alterations in metabolic pathways, biomarker identification, and the potential linkages between metabolic perturbations. Additionally, the paper discusses different types of cell cultures and metabolomics methods used for studies of environmental contaminants and particularly PFAS. Future perspectives on the combination of metabolomics with other advanced technologies, such as single-cell metabolomics (SCM), imaging mass spectrometry (IMS), extracellular flux analysis (EFA), and multi-omics are also explored, which offers a holistic understanding of environmental contaminants. The synthesis of current knowledge and identification of research gaps provide a foundation for future investigations that aim to elucidate the complexities of PFAS-induced cellular responses and contribute to the development of effective strategies for mitigating their adverse effects on human health.
Collapse
Affiliation(s)
- Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam.
| | - Phan Nguyen Trang
- Department of Food Technology, Institute of Food and Biotechnology, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam.
| | - Anu Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia.
| |
Collapse
|
4
|
Pötzl B, Kürzinger L, Stopper H, Fassnacht M, Kurlbaum M, Dischinger U. Endocrine Disruptors: Focus on the Adrenal Cortex. Horm Metab Res 2024; 56:78-90. [PMID: 37884032 PMCID: PMC10764154 DOI: 10.1055/a-2198-9307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.
Collapse
Affiliation(s)
- Benedikt Pötzl
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Lydia Kürzinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of
Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
- Central Laboratory, Core Unit Clinical Mass Spectrometry, University
Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| |
Collapse
|
5
|
Melanda VS, Galiciolli MEA, Lima LS, Figueiredo BC, Oliveira CS. Impact of Pesticides on Cancer and Congenital Malformation: A Systematic Review. TOXICS 2022; 10:676. [PMID: 36355967 PMCID: PMC9692481 DOI: 10.3390/toxics10110676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 05/23/2023]
Abstract
Pesticide exposure has deleterious effects on human health and development; however, no review has been conducted on human exposure to pesticides and the risk of congenital malformations and cancer in the same cohort. We systematically reviewed the evidence for this relationship following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Four databases, namely, PubMed, Scopus, Cochrane Library, and BVS, were searched for studies deposited till July 2020 that examined the influence of pesticide exposure on congenital malformations and cancer outcomes in the same cohort. Seven studies were systematically included in this review. Among these, four were case-control studies, two were cross-sectional studies, and one was a longitudinal cohort study. The sources of contamination were food, water, or exposure during agricultural work. A link between the occurrence of cancer, congenital malformations, and exposure to pesticides was observed in most studies.
Collapse
Affiliation(s)
- Viviane Serra Melanda
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| | - Maria Eduarda A. Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| | - Luíza S. Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| | - Bonald C. Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| | - Cláudia S. Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
6
|
Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs. TOXICS 2022; 10:toxics10070380. [PMID: 35878286 PMCID: PMC9320281 DOI: 10.3390/toxics10070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022]
Abstract
Human beings and wild organisms are exposed daily to a broad range of environmental stressors. Among them are the persistent organic pollutants that can trigger adverse effects on these organisms due to their toxicity properties. There is evidence that metabolomics can be used to identify biomarkers of effect by altering the profiles of endogenous metabolites in biological fluids or tissues. This approach is relatively new and has been used in vitro studies mainly. Therefore, this review addresses those that have used metabolomics as a key tool to identify metabolites associated with environmental exposure to POPs in wildlife and human populations and that can be used as biomarkers of effect. The published results suggest that the metabolic pathways that produce energy, fatty acids, and amino acids are commonly affected by POPs. Furthermore, these pathways can be promoters of additional effects. In the future, metabolomics combined with other omics will improve understanding of the origin, development, and progression of the effects caused by environmental exposure.
Collapse
|
7
|
Running L, Atilla-Gokcumen GE, Aga DS. Development of a Liquid Chromatography-Mass Spectrometry-Based In Vitro Assay to Assess Changes in Steroid Hormones Due to Exposure to Per- and Polyfluoroalkyl Substances. Chem Res Toxicol 2022; 35:1277-1288. [PMID: 35696490 DOI: 10.1021/acs.chemrestox.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Per- and poly-fluorinated substances (PFASs) are organic pollutants that have been linked to numerous health effects, including diabetes, cancers, and dysregulation of the endocrine system. This study aims to develop a liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure changes in 17 hormones in H295R cell line (a steroid producing adrenocortical cells) upon exposure to PFASs. Due to the challenges in the analysis of steroid hormones using electrospray ionization MS, a chemical derivatization method was employed to achieve 0.07-2 μg/L detection limits in LC-MS/MS. Furthermore, a 10-fold concentration factor through solid-phase extraction (SPE) allows for consistent sub-parts per billion detections. Optimization of the derivatization conditions showed doubly-derivatized products in some hormone analytes, including progesterone, corticosterone, and cortisol, and gave improved ionization efficiency up to 20-fold higher signal than the singly-derivatized product. The use of SPE for sample cleanup to analyze hormones from cellular media using weak anion exchange sorbent yielded 80-100% recovery for the 17 targeted hormones. The method was validated by exposing H295R cells to two known endocrine disruptors, forskolin and prochloraz, which showed expected changes in hormones. An initial exposure of H295R cells with various PFAS standards and their mixtures at 1 μM showed significant increases in progestogens with some PFAS treatments, which include PFBS, PFHxA, PFOS, PFDA, and PFDS. In addition, modest changes in hormone levels were observed in cells treated with other sulfonated or carboxylated headgroup PFASs. This sensitive LC-MS/MS method for hormone analysis in H295R cells will allow for the investigations of the alterations in the hormone production caused by exposure to various environmental insults in cell-based assays and other in vitro models.
Collapse
Affiliation(s)
- Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Negrete-Bolagay D, Zamora-Ledezma C, Chuya-Sumba C, De Sousa FB, Whitehead D, Alexis F, Guerrero VH. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113737. [PMID: 34536739 DOI: 10.1016/j.jenvman.2021.113737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Persistent Organic Pollutants (POPs) have become a very serious issue for the environment because of their toxicity, resistance to conventional degradation mechanisms, and capacity to bioconcentrate, bioaccumulate and biomagnify. In this review article, the safety, regulatory, and remediation aspects of POPs including aromatic, chlorinated, pesticides, brominated, and fluorinated compounds, are discussed. Industrial and agricultural activities are identified as the main sources of these harmful chemicals, which are released to air, soil and water, impacting on social and economic development of society at a global scale. The main types of POPs are presented, illustrating their effects on wildlife and human beings, as well as the ways in which they contaminate the food chain. Some of the most promising and innovative technologies developed for the removal of POPs from water are discussed, contrasting their advantages and disadvantages with those of more conventional treatment processes. The promising methods presented in this work include bioremediation, advanced oxidation, ionizing radiation, and nanotechnology. Finally, some alternatives to define more efficient approaches to overcome the impacts that POPs cause in the hydric sources are pointed out. These alternatives include the formulation of policies, regulations and custom-made legislation for controlling the use of these pollutants.
Collapse
Affiliation(s)
- Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Research Group, UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain.
| | - Cristina Chuya-Sumba
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares, Physics and Chemistry Institute, Federal University of Itajubá, 37500-903, Itajubá, Brazil.
| | - Daniel Whitehead
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Victor H Guerrero
- Department of Materials, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, 170525, Ecuador.
| |
Collapse
|
9
|
Sandru F, Dumitrascu MC, Petca A, Carsote M, Petca RC, Oproiu AM, Ghemigian A. Adrenal ganglioneuroma: Prognostic factors (Review). Exp Ther Med 2021; 22:1338. [PMID: 34630692 DOI: 10.3892/etm.2021.10773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Ganglioneuroma, a rare neural crest-derived tumor, exhibits a benign profile in contrast to other neuroblastic tumors (neuroblastoma/ganglioneuroblastoma). Ganglioneuromas can be found anywhere autonomic ganglia are located, mostly abdominal/pelvic sites followed by the adrenal glands (one-third of cases), mediastinum/thorax and cervical area. Affecting especially children more than 10 years of age, Ganglioneuroma is either asymptomatic or may cause local compressive effects; rarely inducing nonspecific abdominal complains or arterial hypertension related to oversecretion of epinephrine/norepinephrine/dopamine. Despite a good prognosis, adrenalectomy is necessary in order to rule out a malignancy. Open procedure represents the standard therapeutic option; alternatively, centers with large laparoscopic pediatric experience and good stratification protocols have reported successful procedures. High uptake of I123-MIBG is associated with a more severe outcome in cases with increased mitotic index. In neuroblastic tumors, neuron-specific enolase >33 ng/ml, age at diagnosis <49 months, and blood vessel invasion indicate a poor prognosis. Concurrent extra-adrenal/adrenal ganglioneuroma is associated with a more severe prognosis; post-surgical complications are more frequent in non-adrenal vs. adrenal ganglioneuroma. Exceptionally, immune-mediated paraneoplastic neurologic syndromes have been reported: anti-N-methyl-D-aspartate receptor encephalitis and opsoclonus-myoclonus-ataxia syndrome. ROHHAD syndrome is the underlying cause in 40-56% of cases of neuroendocrine tumors including ganglioneuroma; 70% of tumors are diagnosed within the first 24 months after hypothalamic obesity onset, associated with a severe prognosis due to hypoventilation, sleep apnea, and dysautonomia. Recently, the PKB/AKT/mTOR/S6 pathway was identified as a tumorigenic pathway in pediatric ganglioneuroma, not in neuroblastoma; mTOR inhibitors are a potential option for pre-operatory tumor shrinkage. Pediatric adrenal ganglioneuroma has a good prognosis if adequately treated; its recognition requires adrenalectomy. Further development of specific biomarkers is needed. In the present article, we aimed to introduce a review of the literature involving adrenal ganglioneuroma based on a practical, multidisciplinary perspective of prognostic factors.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Elias' Emergency Hospital, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'Elias' Emergency Hospital, 022461 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Urology, 'Prof. Dr. Theodor Burghele' Clinical Hospital, 061344 Bucharest, Romania
| | - Ana Maria Oproiu
- Department of Plastic and Reconstructive Surgery, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Plastic and Reconstructive Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adina Ghemigian
- Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Endocrinology, 'C. I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
10
|
Park CM, Kim KT, Rhyu DY. Exposure to a low concentration of mixed organochlorine pesticides impairs glucose metabolism and mitochondrial function in L6 myotubes and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125437. [PMID: 34030398 DOI: 10.1016/j.jhazmat.2021.125437] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
More realistic effects on glucose metabolic dysfunction can be evaluated by applying organochlorine (OCP) mixtures than individual OCPs. We formulated an equal ratio mixture of five OCPs (chlordane, heptachlor, p,p'-dichlorodiphenyltrichloroethane, β-hexachlorocyclohexane, and hexachlorobenzene) and treated L6 myotubes with this OCP mixture to investigate effects on glucose uptake and the underlying mechanism. Exposure to the OCP mixture reduced 2-NBDG staining, representing glucose uptake, and stimulated the excessive production of reactive oxygen species (ROS). Reduced 2-NBDG uptake and ROS overproduction were compensated by insulin treatment. The expression of proteins such as IRβ, PI3K, and AKT was downregulated, indicating that ROS overproduction contributed to the inhibition of insulin-dependent glucose uptake. Reduction in mitochondria quantity and decreased expression levels of PGC-1α, PDH, and GLUT4 proteins were observed, suggesting that mitochondrial dysfunction played a causative role in the disruption of glucose uptake. The inhibition of glucose uptake and ROS overproduction caused by the OCP mixture were also found in zebrafish as an in vivo model. We demonstrated that exposure to the OCP mixture, even at the lowest concentration, perturbed glucose uptake, which was associated with mitochondrial dysfunction, suggesting that an OCP mixture could be a potential environmental factor in type 2 diabetes-related effects on skeletal muscles.
Collapse
Affiliation(s)
- Chul-Min Park
- Department of Nutraceutical Resources and Institute of Korean Herbal Medicine Industry, Mokpo National University, Jeonnam 58554, Republic of Korea; Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Dong-Young Rhyu
- Department of Nutraceutical Resources and Institute of Korean Herbal Medicine Industry, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
11
|
Togola A, Desmarchais A, Téteau O, Vignault C, Maillard V, Buron C, Bristeau S, Guérif F, Binet A, Elis S. Bisphenol S is present in culture media used for ART and cell culture. Hum Reprod 2021; 36:1032-1042. [PMID: 33421069 PMCID: PMC7970731 DOI: 10.1093/humrep/deaa365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/08/2020] [Indexed: 01/15/2023] Open
Abstract
STUDY QUESTION Do plastic laboratory consumables and cell culture media used in ART contain bisphenols? SUMMARY ANSWER The majority of human embryo culture media assessed contained bisphenol S close to the nanomolar concentration range, while no release of bisphenols by plastic consumables was detected under routine conditions. WHAT IS KNOWN ALREADY The deleterious effect of the endocrine disruptor bisphenol A (BPA) on female fertility raised concerns regarding ART outcome. BPA was detected neither in media nor in the majority of plastic consumables used in ART; however, it might have already been replaced by its structural analogs, including bisphenol S (BPS). STUDY DESIGN, SIZE, DURATION Seventeen plastic consumables and 18 cell culture and ART media were assessed for the presence of bisphenols. PARTICIPANTS/MATERIALS, SETTING, METHODS Ten different bisphenols (bisphenol A, S, AF, AP, B, C, E, F, P and Z) were measured using an isotopic dilution according to an on-line solid phase extraction/liquid chromatography/mass spectrometry method. MAIN RESULTS AND THE ROLE OF CHANCE While the plastic consumables did not release bisphenols under routine conditions, 16 of the 18 cell culture and ART media assessed contained BPS. Six media exhibited BPS concentrations higher than 1 nM and reached up to 6.7 nM (1693 ng/l). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further studies are required to investigate a greater number of ART media to identify less potentially harmful ones, in terms of bisphenol content. WIDER IMPLICATIONS OF THE FINDINGS As BPS has already been reported to impair oocyte quality at nanomolar concentrations, its presence in ART media, at a similar concentration range, could contribute to a decrease in the ART success rate. Thus far, there has been no regulation of these compounds in the ART context. STUDY FUNDING/COMPETING INTERESTS This study was financially supported by the ‘Centre-Val de Loire’ Region (Bemol project, APR IR 2017), INRAE, BRGM, the French National Research Agency (project ANR-18-CE34-0011-01 MAMBO) and the BioMedicine Agency (Project 18AMP006 FertiPhenol). The authors declare that they have no conflict of interest that could be perceived as prejudicing the impartiality of the reported research.
Collapse
Affiliation(s)
- A Togola
- BRGM, Orléans Cedex 245060, France
| | - A Desmarchais
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France
| | - O Téteau
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France
| | - C Vignault
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France.,Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours 37000, France
| | - V Maillard
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France
| | - C Buron
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France
| | | | - F Guérif
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France.,Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours 37000, France
| | - A Binet
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France.,Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours 37000, France
| | - S Elis
- PRC, INRAE, CNRS, Université de Tours, IFCE, Nouzilly 37380, France
| |
Collapse
|
12
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
13
|
Vinggaard AM, Bonefeld-Jørgensen EC, Jensen TK, Fernandez MF, Rosenmai AK, Taxvig C, Rodriguez-Carrillo A, Wielsøe M, Long M, Olea N, Antignac JP, Hamers T, Lamoree M. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. ENVIRONMENT INTERNATIONAL 2021; 146:106191. [PMID: 33068852 DOI: 10.1016/j.envint.2020.106191] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Humans are exposed to a large number of chemicals from sources such as the environment, food, and consumer products. There is growing concern that human exposure to chemical mixtures, especially during critical periods of development, increases the risk of adverse health effects in newborns or later in life. Historically, the one-chemical-at-a-time approach has been applied both for exposure assessment and hazard characterisation, leading to insufficient knowledge about human health effects caused by exposure to mixtures of chemicals that have the same target. To circumvent this challenge researchers can apply in vitro assays to analyse both exposure to and human health effects of chemical mixtures in biological samples. The advantages of using in vitro assays are: (i) that an integrated effect is measured, taking combined mixture effects into account and (ii) that in vitro assays can reduce complexity in identification of Chemicals of Emerging Concern (CECs) in human tissues. We have reviewed the state-of-the-art on the use of receptor-based in vitro assays to assess human exposure to chemical mixtures and related health impacts. A total of 43 studies were identified, in which endpoints for the arylhydrocarbon receptor (AhR), the estrogen receptor (ER), and the androgen receptor (AR) were used. The majority of studies reported biological activities that could be associated with breast cancer incidence, male reproductive health effects, developmental toxicities, human demographic characteristics or lifestyle factors such as dietary patterns. A few studies used the bioactivities to check the coverage of the chemical analyses of the human samples, whereas in vitro assays have so far not regularly been used for identifying CECs in human samples, but rather in environmental matrices or food packaging materials. A huge field of novel applications using receptor-based in vitro assays for mixture toxicity assessment on human samples and effect-directed analysis (EDA) using high resolution mass spectrometry (HRMS) for identification of toxic compounds waits for exploration. In the future this could lead to a paradigm shift in the way we unravel adverse human health effects caused by chemical mixtures.
Collapse
Affiliation(s)
- Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland's Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Tina Kold Jensen
- Dep of Environmental Medicine, University of Southern Denmark, Denmark
| | - Mariana F Fernandez
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Nicolas Olea
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Timo Hamers
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
14
|
Martinez-Swatson K, Mihály E, Lange C, Ernst M, Dela Cruz M, Price MJ, Mikkelsen TN, Christensen JH, Lundholm N, Rønsted N. Biomonitoring of Polycyclic Aromatic Hydrocarbon Deposition in Greenland Using Historical Moss Herbarium Specimens Shows a Decrease in Pollution During the 20 th Century. FRONTIERS IN PLANT SCIENCE 2020; 11:1085. [PMID: 32760420 PMCID: PMC7373755 DOI: 10.3389/fpls.2020.01085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Although most point sources of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), are at lower latitudes, the Arctic region is contaminated. In particular, PAHs now dominate the POP body burden of the region's marine biota at the lower trophic levels. Greenlandic Inuits have the most elevated levels of POPs in their blood compared to any other population, due to their consumption of seal meat and other marine mammals. PAHs, the by-products of the incomplete combustion of petroleum products, are known carcinogens and have been shown to affect the immune system, reproduction, endocrine functions, and the nervous system. With industrial activities and climate change set to increase local PAH emissions, it is paramount to document changes in atmospheric PAH deposition to further investigate PAH exposure in the region and attribute contaminations to their sources. As a measure of atmospheric pollution, we sampled bryophyte herbarium specimens of three common and widespread species collected in Greenland between the 1920s and 1970s after which time new collections were not available. They were analyzed for 19 PAHs using GC-MS (gas chromatography mass spectrometry). The presence of more low-molecular-weight PAHs than high-molecular-weight PAHs is evidence that the PAH contamination in Greenland is due to long-range transport rather than originating from local sources. The results show peaks in PAH atmospheric deposition in the first part of the 19th century followed by a trend of decrease, which mirror global trends in atmospheric pollution known from those periods. PAHs associated with wood and fossil-fuel combustion decrease in the 1970s coinciding with the disappearance of charcoal pits and foundries in Europe and North America, and a shift away from domestic heating with wood during the 19th century. The results highlight the value of bryophytes as bioindicators to measure PAH atmospheric pollution as well as the unrealized potential of herbaria as historical records of environmental change.
Collapse
Affiliation(s)
- Karen Martinez-Swatson
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eszter Mihály
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Lange
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Madeleine Ernst
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Center for Newborn Screening, Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Majbrit Dela Cruz
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michelle J. Price
- Conservatoire et Jardin Botaniques de la Ville de Genève, Geneva, Switzerland
| | | | - Jan H. Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Science and Conservation, National Tropical Botanical Garden, Kalaheo, HI, United States
| |
Collapse
|
15
|
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020; 21:127-147. [PMID: 31792807 DOI: 10.1007/s11154-019-09521-z] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine Disrupting Chemicals (EDCs) are a global problem for environmental and human health. They are defined as "an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". It is estimated that there are about 1000 chemicals with endocrine-acting properties. EDCs comprise pesticides, fungicides, industrial chemicals, plasticizers, nonylphenols, metals, pharmaceutical agents and phytoestrogens. Human exposure to EDCs mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Most EDCs are lipophilic and bioaccumulate in the adipose tissue, thus they have a very long half-life in the body. It is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at later ages, and in some people do not present. Timing of exposure is of importance. Developing fetus and neonates are the most vulnerable to endocrine disruption. EDCs may interfere with synthesis, action and metabolism of sex steroid hormones that in turn cause developmental and fertility problems, infertility and hormone-sensitive cancers in women and men. Some EDCs exert obesogenic effects that result in disturbance in energy homeostasis. Interference with hypothalamo-pituitary-thyroid and adrenal axes has also been reported. In this review, potential EDCs, their effects and mechanisms of action, epidemiological studies to analyze their effects on human health, bio-detection and chemical identification methods, difficulties in extrapolating experimental findings and studying endocrine disruptors in humans and recommendations for endocrinologists, individuals and policy makers will be discussed in view of the relevant literature.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Hakan Terekeci
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
16
|
In vitro effects of single and binary mixtures of regulated mycotoxins and persistent organochloride pesticides on steroid hormone production in MA-10 Leydig cell line. Toxicol In Vitro 2019; 60:272-280. [DOI: 10.1016/j.tiv.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 01/29/2023]
|
17
|
Abstract
Adrenocortical carcinoma (ACC) is an uncommon and heterogeneous disease and may present differently in children and adults. Management of ACC is dependent on disease stage and complete surgical resection is the only potentially curative treatment. The first and most extensively used adrenocortical cancer cell line, as model system to examine mechanisms controlling normal and pathologic function of adrenal cortex, was initially isolated in 1980. Although NCI-H295 maintained steroid capabilities and adrenocortical characteristics, the lack of new cell lines and animal models of ACC has hampered the progress and development of new therapies. In this review we provide description of cellular and patient-derived tumor xenograft (PDTX) models of ACC generated for the elucidation of the underlying pathogenic mechanisms and preclinical functional studies for this aggressive disease.
Collapse
|