1
|
Dhanda N, Kumar S. Water disinfection and disinfection by products. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:461. [PMID: 40128505 DOI: 10.1007/s10661-025-13915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
For ecological safety and public health, it is essential to identify the causes of pollution in water sources and the effects of both natural and human activities. A class of secondary pollutants known as disinfection byproducts (DBPs) is produced when water is treated with disinfectant. Global problems include DBP formation, monitoring, and health effects in drinkable water. Because of the negative health effects of drinking chlorinated water and some DBPs, water manufacturers have made an attempt to balance pathogen elimination with DBP monitoring. The primary obstacles to managing DBPs are their low concentrations and the viability of their extensive use from a technical and economic perspective. Adsorption on activated carbons, ion exchange, membrane processes, and reducing precursors like NOMs are some of the techniques that may be used in controlling DBPs. The application of both new and conventional disinfection technologies in the removal of ARB and ARGs is also summarized in this review, with an emphasis on bacterial inactivation mechanisms like ozonation, chlorination, ultraviolet (UV), sunlight, sunlight-dissolved organic matter (DOM), and photocatalysis/photoelectrocatalysis (PEC).
Collapse
Affiliation(s)
- Nishu Dhanda
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, India
| | - Sudesh Kumar
- DESM, National Institute of Education, NCERT, New Delhi, 110016, India.
| |
Collapse
|
2
|
Kali S, Zafar MI, Farooqi A, Saifullah M, Rasheed S, Niazi MBK, Waseem A, Campos LC. Seasonal Variations in Potable Water Quality of Bahawalpur City: A Comprehensive Assessment of Major Ions, Organic Matter, and Disinfection Byproducts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:383. [PMID: 40072759 DOI: 10.1007/s10661-025-13866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Industrialization and population explosion are ultimately affecting freshwater resources. Bahawalpur is a rapidly growing city in Pakistan where groundwater is the major source of drinking water. However, groundwater is also being contaminated due to various anthropogenic sources. To meet the need for clean drinking water, filtration plants have been installed throughout the city. To monitor the water quality index of the treated water, water samples were collected from the filtration plants installed by Tehsil Municipal Administration in Bahawalpur city. Different physicochemical parameters, major ions, organic matter, and disinfection byproducts (DBPs) were analysed. Both raw and chlorinated water in summer and winter season were investigated. Results revealed that all raw samples were biologically contaminated showing the presence of E. coli in all raw water samples, this justified the need for disinfection. Despite chlorination, several samples were still contaminated due to the lack of available residual chlorine in the distribution system. The carcinogenic Bromoform (27% samples) and dibromochloromethane (22% samples) surpassed the WHO permissible limits for drinking water in both seasons. Dichloroacetic acid exceeded the WHO permissible limits in 33% and 11% of samples during summer and winter, respectively. Overall, DBPs were higher during summer than winter season. Standard ultraviolet absorption at 254 nm (SUVA254) showed that the source of organic matter was microbial except for Bohar gate and Islamic colony, where the source of water was surface water. Chlorination also affected the water chemistry in both seasons. The water quality index showed that the chlorinated water was fit for drinking in the winter season; however, 34% of samples were found unfit for drinking during summer. Monitoring of the DBPs is recommended on a regular basis, in addition to the organic matter removal from the water before chlorination. This study provides valuable information to achieve Sustainable Development Goal 6 which is for clean water and sanitation. So, this research can provide significant data to the policy makers to improve the water quality in developing countries like Pakistan.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Abida Farooqi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Saifullah
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650, Pakistan
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli, Azad Jamu and Kashmir, Kotli, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Luiza C Campos
- Department of Civil, Environment & Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
3
|
Liu X, Fan Y, Ni M, Wang Z. The sorption of algal organic matter by extracellular polymeric substances: Trade-offs in disinfection byproduct formation influenced by divalent ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178239. [PMID: 39721540 DOI: 10.1016/j.scitotenv.2024.178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Disinfection by-products (DBPs), formed from biofilm extracellular polymeric substances (EPS) and organic matter during regular disinfection practices in drinking water distribution systems, poses a potential threat to drinking water safety. However, the diverse DBP formations induced by the intertwined algal organic matter (AOM) and bacterial EPS remains elusive. In this study, we show substantial variations in EPS and DBP formation patterns driven by AOM biosorption with divalent ions (Ca2+ and Mg2+). Divalent ions in bulk water can significantly inhibit carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs) formation. Mechanistically, divalent ions promote the complexation of negative charged groups and thus inhibit C-DBP formation, while the hindering chlorine substitution of hydrogen atoms on α‑carbon and amine groups reduces N-DBP formation. Conversely, Ca2+ and Mg2+ could facilitate biosorption processes that increased the yields of C-DBPs and N-DBPs. Both EPS and AOM provide halogenated reactive sites for DBP formation, exhibiting diverse aromatic substances and unsaturated (lignin and tannins) compounds. Our results highlight divalent ions acting as a fundamental driving force in DBP formation, suggesting the need for cautious monitoring of divalent ions in karst water.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yichun Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China.
| |
Collapse
|
4
|
Qian Y, Yu M, Zhang R, Wang Z. Impact of permanganate with polyaluminium chloride on algae-laden karst water: Behaviors and disinfection by-products control. ENVIRONMENTAL RESEARCH 2024; 262:119758. [PMID: 39117056 DOI: 10.1016/j.envres.2024.119758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
The removal of algal organic matter (AOM) through water treatment processes is a major approach of reducing the formation of disinfection by-products (DBP). Here, the formation of DBP from AOM in karst water under different combination of potassium permanganate (KMnO4) and polyaluminium chloride (PACl) was investigated. The effect of divalent ions (Ca2+ and Mg2+) on DBP formation was traced by AOM chemistry variations. For DBP formation after KMnO4 preoxidation, total carbonaceous DBPs (C-DBPs) decreased by 12.9% but nitrogen-containing DBPs (N-DBPs) increased by 18.8%. Conversely, the C-DBPs further increased by 3.3% but N-DBPs reduced by 10.7% after the addition of PACl besides KMnO4 preoxidation. The variations of aromatic protein-like, soluble microbial products-like compounds and ultraviolet absorbance at 254 nm (UV254) were highly correlated with the formation of DBPs, which suggest aromatic substances strongly affect DBP behaviors at different treatment conditions. In the presence of divalent ions (Ca2+ = 135.86 mg/L, Mg2+ = 18.51 mg/L), the combination of KMnO4 and PACl was more effective in controlling DBP formation compared to the situation without Ca2+ and Mg2+. Specifically, trichloromethane formation was largely inhibited compared to the other tested DBPs, which may refer to complexation of electron-donating groups via divalent ions. While Ca2+ and Mg2+ may not affect the nature of α-carbon and amine groups, so the variation of haloacetonitriles (HANs) was not obvious. The study enhances the understanding of the DBP formation patterns, transformation of carbon and nitrogen by preoxidation-coagulation (KMnO4-PACl) treatment in algae-laden karst water.
Collapse
Affiliation(s)
- Yu Qian
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Mengxin Yu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Runyu Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550009, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Wang T, Deng L, Tan C, Hu J, Singh RP. Effects of cupric ions on the formation of chlorinated disinfection byproducts from nitrophenol compounds during UV/post-chlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134362. [PMID: 38643576 DOI: 10.1016/j.jhazmat.2024.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Cupric ions (Cu2+) are ubiquitous in surface waters and can influence disinfection byproducts (DBPs) formation in water disinfection processes. This work explored the effects of Cu2+ on chlorinated DBPs (Cl-DBPs) formation from six representative nitrophenol compounds (NCs) during UV irradiation followed by a subsequent chlorination (i.e., UV/post-chlorination), and the results showed Cu2+ enhanced chlorinated halonitromethane (Cl-HNMs) formation from five NCs (besides 2-methyl-3-nitrophenol) and dichloroacetonitrile (DCAN) and trichloromethane (TCM) formation from six NCs. Nevertheless, excessive Cu2+ might reduce Cl-DBPs formation. Increasing UV fluences displayed different influences on total Cl-DBPs formation from different NCs, and increasing chlorine dosages and NCs concentrations enhanced that. Moreover, a relatively low pH (5.8) or high pH (7.8) might control the yields of total Cl-DBPs produced from different NCs. Notably, Cu2+ enhanced Cl-DBPs formation from NCs during UV/post-chlorination mainly through the catalytic effect on nitro-benzoquinone production and the conversion of Cl-DBPs from nitro-benzoquinone. Additionally, Cu2+ could increase the toxicity of total Cl-DBPs produced from five NCs besides 2-methyl-3-nitrophenol. Finally, the impacts of Cu2+ on Cl-DBPs formation and toxicity in real waters were quite different from those in simulated waters. This study is conducive to further understanding how Cu2+ affected Cl-DBPs formation and toxicity in chlorine disinfection processes and controlling Cl-DBPs formation in copper containing water.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
6
|
Zhang T, Jiang R, Fang L, Liu X, Jiang L. Chlorination of L-tyrosine and metal complex: degradation kinetics and disinfection by-products generation. ENVIRONMENTAL TECHNOLOGY 2023; 44:3532-3543. [PMID: 35392772 DOI: 10.1080/09593330.2022.2064239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The presence of metal ions in drinking water treatment and distribution systems may affect the disinfection process of organic matter, which had aroused people's concern. L-tyrosine can complex with metal ions through carboxyl, carbonyl, and amino groups and affect its chemical reactions. In this paper, the complexation of L-tyrosine with common metal ions was studied and the influence of complexation on chlorination with different experimental factors was investigated. It was inferred that L-tyrosine complexed with metal ions by single dentate ligand or double dentate chelation in a ratio of 2:1. The degradation of L-tyrosine-metal complex followed the pseudo-first-order reaction kinetic. TCM, DCAA, and TCAA were the main species DBPs in the chlorination of L-tyrosine. Compared with L-tyrosine, the reaction rate constants of complex increased by 5.6%, the formation of trihalomethane production decreased by 21.5% and the formation of haloacetic acids production increased by 26.9% at the state of metal complexation. The effect of metal complexation on chlorination was more obvious than that of metal coexistence. For different metal complexation, the order of inhibition on trihalomethane production was Ca2+> Fe3+> Mn2+ and the order of promotion on haloacetic acids production was Mn2+> Fe3+> Ca2+. Moreover, it was found that alkaline conditions were favorable for the formation of DBPs due to the hydroxyl radical. The combination of ultraviolet and chlorine disinfection promoted L-Tyrosine degradation and DBPs generation, and the promotion efficiency follow the order: UV/Cl2> UV-Cl2> Cl2.
Collapse
Affiliation(s)
- Tuqiao Zhang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People's Republic of China
| | - Rongrong Jiang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People's Republic of China
| | - Lei Fang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaowei Liu
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People's Republic of China
| | - Lijie Jiang
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, People's Republic of China
- College of Water Resources and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Impacts of water hardness on coagulation-UF-NF process using aluminum salts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Kumar M, Shekhar S, Kumar R, Kumar P, Govarthanan M, Chaminda T. Drinking water treatment and associated toxic byproducts: Concurrence and urgence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121009. [PMID: 36634860 DOI: 10.1016/j.envpol.2023.121009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Reclaimed water is highly required for environmental sustainability and to meet sustainable development goals (SDGs). Chemical processes are frequently associated with highly hazardous and toxic by-products, like nitrosamines, trihalomethanes, haloaldehydes, haloketones, and haloacetic acids. In this context, we aim to summarize the formation of various commonly produced disinfection by-products (DBPs) during wastewater treatment and their treatment approaches. Owing to DBPs formation, we discussed permissible limits, concentrations in various water systems reported globally, and their consequences on humans. While most reviews focus on DBPs detection methods, this review discusses factors affecting DBPs formation and critically reviews various remediation approaches, such as adsorption, reverse osmosis, nano/micro-filtration, UV treatment, ozonation, and advanced oxidation process. However, research in the detection of hazardous DBPs and their removal is quite at an early and initial stage, and therefore, numerous advancements are required prior to scale-up at commercial level. DBPs abatement in wastewater treatment approach should be considered. This review provides the baseline for optimizing DBPs formation and advancements in the remediation process, efficiently reducing their production and providing safe, clean drinking water. Future studies should focus on a more efficient and rigorous understanding of DBPs properties and degradation of hazardous pollutants using low-cost techniques in wastewater treatment.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Shashank Shekhar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Pawan Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
9
|
Hao T, Miao M, Cheng X, Dou Y, Zhang M, Li Y. The effects of polypropylene microplastics on the DBP formation under the chlorination and chloramination processes. CHEMOSPHERE 2022; 303:135102. [PMID: 35623421 DOI: 10.1016/j.chemosphere.2022.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
With the increased use of microplastics in modern society, tonnes of various microplastics (MPs) end up in natural and engineered water systems if not properly handled. Being a class of organics, the role of MPs during the disinfection of water treatment systems is still unclear at this stage. In the current experimental study, the formation of 6 typical disinfection by-products (DBPs) was investigated using varying concentrations of polypropylene (PP) MPs under various aquatic chemistry conditions and disinfectants. All investigated DBPs were detected, during the chlorination of PP, with an average CHCl3 concentration of 378 μg/g, and other DBPs, including CHCl2Br, TCA, DCAN, 1,1-DCP, and TCNM, were present in less than 60 μg/g, on average. When PP coexisted with Suwannee River Fulvic acid (SRFA), a suppression of DBP formation was observed with a 56% net reduction compared with a condition of PP alone. The dynamic balance of being a DBP precursor, or a scavenger, by absorbing the organics of PP is subjected to aquatic chemistry. Increasing the pH decreases the HOCl concentrations, reducing the PP oxidation capacity and DBP formation. As salinity increases, the aggregation of PP can reduce the reaction sites on the surface of PP and enhance the adsorption of SRFA, hence lowering the formation of DBPs.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yuanyuan Dou
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
10
|
Kali S, Khan M, Ghaffar MS, Rasheed S, Waseem A, Iqbal MM, Bilal Khan Niazi M, Zafar MI. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116950. [PMID: 33819670 DOI: 10.1016/j.envpol.2021.116950] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Marina Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Sheraz Ghaffar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Sciences, University of Kotli, Azad Jamu Kashmir, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium; Soil and Water Testing Laboratory, Department of Agriculture, Chiniot, Government of Punjab, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
11
|
Deng L, Liao X, Shen J, Xu B. Effects of amines on the formation and photodegradation of DCNM under UV/chlorine disinfection. Sci Rep 2020; 10:12602. [PMID: 32724105 PMCID: PMC7387445 DOI: 10.1038/s41598-020-69426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Investigations were conducted to examine the effects of amine type and initial concentration, free chlorine concentration, UV light intensity, pH and tert-butyl alcohol (TBA) on the formation of dichloronitromethane (DCNM) under UV/chlorine. Methylamine (MA), dimethylamine (DMA) and poly-dimethyl diallyl ammonium chloride (PolyDADMAC) were selected as the amine precursors of DCNM. And the reaction products of amines were explored through observing the contents of various nitrogen under UV/chlorine. Experimental results indicated that the higher of the intensity of UV light, the concentration of amines and free chlorine, the greater of the amount of DCNM formation; the amine substance with simple structure is more likely oxidized to form DCNM, so the potential of MA to form DCNM is the largest among three amines; the formation of DCNM decreased with increasing pH from 6.0 to 8.0; due to adding TBA into the reaction solution, halogen and hydroxyl radicals were restrained which resulted the DCNM formation decreased. In the reaction process, the formation of DCNM from amines increased at the beginning, then decreased and almost disappeared due to photodegradation. During the formation and photodegradation of DCNM, the dissolved organic nitrogen could be transformed into the ammonia-nitrogen (NH3-N) and nitrate-nitrogen (NO3--N).
Collapse
Affiliation(s)
- Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Xueying Liao
- Department of Municipal Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiaxin Shen
- Department of Municipal Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Bohui Xu
- Department of Municipal Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
12
|
Yin J, Gao W, Zhang Z, Mai Y, Luan A, Jin H, Jian J, Jin Q. Batch microfabrication of highly integrated silicon-based electrochemical sensor and performance evaluation via nitrite water contaminant determination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Moreno-Andrés J, Peperzak L. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems. CHEMOSPHERE 2019; 232:496-505. [PMID: 31170652 DOI: 10.1016/j.chemosphere.2019.05.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
To prevent the worldwide spread of invasive aquatic species, the ballast water of ships may be disinfected with either physical or chemical treatment systems. Excess chemicals, such as chlorine, are neutralized before the ballast water can be discharged. Unfortunately, disinfection byproducts (DBPs) formed during treatment are not neutralized and remain potentially toxic. In this study, DBPs obtained from land-based tests of seven different ballast water treatment systems (BWTSs) have been statistically analyzed. Effect of operational factors (treatment type, holding time, source of carbon and active substance dosages) and environmental variables (salinity, pH, temperature, organic matter) were related to the formation of DBPs, such as trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs) and aldehydes. THMs and HAAs were the groups with major occurrences and concentrations detected in all BWTSs. Treatment type and source of carbon were the operational factors with major significance on DBP production, especially in chlorination systems. Salinity is the main variable determining DBP composition, as it differs between brominated-DBPs and chlorinated-DBPs. Concentration and type of organic matter (dissolved and particulate) have also a significant influence on the formation of total DBPs. According to the specific group of DBPs, some factors get significance. For instance, THMs are significantly affected by pH, and the production of aldehydes correlates positively with oxidant dose.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies. INMAR-Marine Research Institute. University of Cádiz. Campus Universitario Puerto Real, 11510, Puerto Real. Cádiz, Spain; NIOZ Royal Institute for Sea Research and Utrecht University, Department of Estuarine and Delta Systems (EDS) and Control Union Water (CUW), P.O. Box 59, NL-1790 AB Texel, the Netherlands.
| | - Louis Peperzak
- NIOZ Royal Institute for Sea Research and Utrecht University, Department of Estuarine and Delta Systems (EDS) and Control Union Water (CUW), P.O. Box 59, NL-1790 AB Texel, the Netherlands
| |
Collapse
|
14
|
Tsai KP, Uzun H, Chen H, Karanfil T, Chow AT. Control wildfire-induced Microcystis aeruginosa blooms by copper sulfate: Trade-offs between reducing algal organic matter and promoting disinfection byproduct formation. WATER RESEARCH 2019; 158:227-236. [PMID: 31039452 DOI: 10.1016/j.watres.2019.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Elevated levels of nutrients due to wildfire ash input into stream waters will likely cause algal blooms. When source water is impeded by algae and requires immediate restoration, copper algaecides are usually applied. Previous studies indicate that Cu2+ can promote reactivity of dissolved organic matter in forming disinfection byproducts (DBPs). However, it is unclear that how DBP formation is changed after the treatment of post-fire algal bloom by copper algaecide. In this study Microcystis aeruginosa was cultured in the medium containing black and white ash water extracts (BE and WE) to study DBP concentrations before and after 4-days exposures to low and high copper sulfate (0.5 and 1.0 mg-Cu/L). Dissolved organic matter (DOM) was characterized by UV-VIS absorption and fluorescence spectroscopy and chlorination/chloramination-based DBP formation potential (FP) experiments. DOM concentrations and algal population in the treatments were lower than that in control, regardless of types of water extract. N-nitrosodimethylamine FP in the treatments were 4-6 times higher than the control (0.23-0.34 vs. 0.05-0.06 μg/L), while haloacetonitrile FP revealed no significant difference (132-191 vs. 167-185 μg/L). Trade-offs between reducing algal population and promoting DBP-FP were more pronounced for the solutions containing BE than WE. Low copper concentration was as effective as high concentration in inhibiting algal growth while minimizing promotion of DBP formation. The results can serve to support risk evaluations of algal population and DBP concentration when wildfire-induced algal bloom is left untreated and treated by copper algaecides.
Collapse
Affiliation(s)
- Kuo-Pei Tsai
- Biogeochemistry & Environmental Quality Research Group, Clemson University, South Carolina, 29440, USA; Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Habibullah Uzun
- Department of Environmental Engineering, Marmara University, Istanbul, 34722, Turkey; Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29634, USA
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, South Carolina, 29440, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29634, USA
| | - Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, South Carolina, 29440, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29634, USA.
| |
Collapse
|