1
|
Deng R, Wang M, Chung KF, Zhu Y. Lung proteomic and metabolomic changes induced by carbon black nanoparticles and high humidity in a mouse asthma model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125631. [PMID: 39755354 DOI: 10.1016/j.envpol.2025.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Allergic asthma is a significant international concern in respiratory health, which can be exacerbated by the increasing levels of non-allergenic pollutants. This rise in airborne pollutants is a primary driver behind the growing prevalence of asthma, posing a health emergency. Additionally, climatic risk factors can contribute to the onset and progression of asthma. Understanding the complex interplay between pollution, climate, and asthma induction is crucial to elucidate how environmental changes intensify asthma. In this study, we investigated the proteomic and metabolomic changes in the lungs of a mouse asthma model following co-exposure to carbon black nanoparticles and high humidity, which represent airborne and climatic factors, respectively. An asthma model was established using ovalbumin, and mice were intratracheally instilled with 15 or 30 μg/kg of carbon black and simultaneously exposed to either 70% or 90% relative humidity. Protein and metabolite profiles from the lung were used to analyze the most significantly changed clusters, and potential biomarkers and enriched pathways were identified to dissect the adverse effects of the two risk factors. The lung proteome and metabolome are significantly altered by the co-exposure, with the effects modulated by carbon black concentration and humidity level. This study proposes 10 proteins and 18 metabolites as candidate biomarkers. The significantly enriched KEGG pathways include one protein pathway (primary immunodeficiency) and six metabolic pathways (ABC transporters, nucleotide metabolism, Parkinson's disease, purine metabolism, choline metabolism in cancer, and biosynthesis of cofactors). A joint proteomic and metabolomic analysis identifies five common pathways across both omics, namely, ABC transporters, central carbon metabolism in cancer, EGFR tyrosine kinase inhibitor resistance, glioma, and NF-kappa B signaling pathway, disturbed by the co-exposure. We provide a multi-omic basis for the health risk assessment and management of co-exposures to environmental risk factors.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, SW3 6LY, United Kingdom
| | - Ya Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
2
|
Liu N, Zhong Q, Sun Z, Zhang B. Creatine monohydrate administration delayed muscle glycolysis of antemortem-stressed broilers by enhancing muscle energy status, increasing antioxidant capacity and regulating muscle metabolite profiles. Poult Sci 2025; 104:104778. [PMID: 39798284 PMCID: PMC11954914 DOI: 10.1016/j.psj.2025.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Preslaughter stress induced a negative energy balance of broilers, resulted in an accelerated glycolysis and finally led to an inferior meat quality. The present study aimed to investigate the effects of creatine monohydrate (CMH) supplementation on muscle energy storage, antioxidant capacity, the glycolysis of postmortem muscle and the metabolite profiles in muscle of broilers subjected to preslaughter transport. Two hundred and forty broilers were chosen and randomly allocated into three treatments (group A, group B and group C), comprising 8 replicates (10 broilers each replicate). Broilers in group A and B as well as group C were fed with the basal diet or diets containing 1200 mg/kg CMH for 14 days, respectively. After 12 h feed deprivation, broilers in group B (T3h group) and group C (T3h +CMH1200 group) were both subjected to a preslaughter transportation (3 h), but those in group A were treated with a 0.5 h-transport (refined as the control group). The results showed that preslaughter stress led to a lower pH24h value, a bigger L* value and a higher drip loss of muscle compared with the control group (P < 0.05). In addition, transport stress accelerated glycolysis in postmortem muscle, decreased energy storage and the antioxidant capacities of muscle (P < 0.05). However, CMH administration ameliorated energy status, delayed muscle glycolysis, elevated mRNA expression involved in Cr metabolism and inhibited AMPK signaling of broilers experienced preslaughter transport stress. Moreover, significant differences in glycine, serine and threonine metabolism, cysteine and methionine metabolism, purine metabolism, arginine and proline metabolism, ABC transporters, carbon metabolism, lysine metabolism and sulfur metabolism were observed using pathway enrichment analysis. Additionally, the contents of Cr and ATP were positively correlated with branched amino acids (L-valine and l-leucine), l-asparagine, inosine, PCr and d-ribose by metabolomics analysis. Taken together, CMH ameliorated energy status, delayed muscle glycolysis and improved meat quality of antemortem-stressed broilers by the regulation of pathways and key metabolites involved in energy metabolism of postmortem muscle.
Collapse
Affiliation(s)
- Ning Liu
- College of Animal Science and Technology, Ministry of Education Laboratory of, Animal Production and Quality Security, Jilin Agricultural University, Changchun 130117, China
| | - Qingzhen Zhong
- College of Animal Science and Technology, Ministry of Education Laboratory of, Animal Production and Quality Security, Jilin Agricultural University, Changchun 130117, China
| | - Zewei Sun
- College of Animal Science and Technology, Ministry of Education Laboratory of, Animal Production and Quality Security, Jilin Agricultural University, Changchun 130117, China.
| | - Bolin Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China; Department of Biology and Agriculture, Zunyi Normal College, Ping`an Avenue, Hong Huagang District, Zunyi 563006, China
| |
Collapse
|
3
|
Ozkarafakili MA, Kara ZMY, Musluman AM, Bek TT. The Association of Plasma Asymmetric Dimethylarginine Concentrations and Inflammation Markers in Non-small Cell Lung Cancer. SISLI ETFAL HASTANESI TIP BULTENI 2024; 58:460-467. [PMID: 39816429 PMCID: PMC11729830 DOI: 10.14744/semb.2024.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 01/18/2025]
Abstract
Objectives Nonsmall cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Asymmetric dimethylarginine (ADMA) is an emerging molecule that is highlighted in carcinogenesis and tumor progression in lung cancer. Since elevated concentrations of ADMA are observed in lung cancer patients, we aimed to explore its associations with inflammation markers and established prognostic indices. Methods 78 newly diagnosed non-small cell lung cancer patients who were presented with brain metastases at the initial admission and 41 Stage 1 patients with NSCLC were included in the study. ADMA concentrations among the groups were correlated. Further, the relationship between ADMA levels and the other inflammatory markers was analyzed. Results ADMA levels were significantly higher in the group of NSCLC patients with brain metastases than in the Stage 1 patients control group (p<0.001). A significant negative correlation was found between ADMA levels and BMI, albumin and hemoglobin (p<0.001), whereas it was positively correlated with platelet, WBC, neutrophil-to-lymphocyte ratio, RDW, RDW/albumin ratio, LDH, CRP, fibrinogen, platelet, and CRP/albumin ratio (p<0.001). Conclusion Increased circulating concentrations of ADMA were significantly correlated with higher NLR, CRP and LDH; which were accepted as indicators of poor prognosis in NSCLC patients. ADMA might contribute to tumor growth and dissemination via systemic inflammatory pathways.
Collapse
Affiliation(s)
- Mufide Arzu Ozkarafakili
- Department of Chest Diseases, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Zeynep Mine Yalcinkaya Kara
- Department of Biochemistry, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ahmet Murat Musluman
- Department of Neurosurgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Tuba Tulin Bek
- Department of Radiation Oncology, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
4
|
Li H, Chen F, Xu C, Wang Y, Deng C, Meng Q, Zhu W. Improving the Characteristics of Fruiting Bodies in Lentinus edodes: The Impact of Rolipram-Induced cAMP Modulation. Metabolites 2024; 14:619. [PMID: 39590855 PMCID: PMC11596096 DOI: 10.3390/metabo14110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Strains XG04 and XGT2 of Lentinus edodes (Berk.) Singer demonstrate a high degree of genomic similarity, with XGT2 representing a systematic selection of XG04 and exhibiting enhanced phenotypic traits. Methods: An investigation into the differences between these strains was conducted using untargeted metabolomics to identify potential causal factors. Five exogenous inducers were assessed for their relationship with the observed phenotypes, and their impacts on fruiting body characteristics were analyzed. Results: Notably, the exogenous inducer rolipram, at a concentration of 0.4%, was found to increase cAMP expression levels in L. edodes primordia, which subsequently affected gill development, leading to the formation of gill-free fruiting bodies. Morphological differences between the two strains were evident; XG04 exhibited a spherical morphology with absent gills, rendering it commercially unviable, whereas XGT2 displayed a thicker cap and a more robust stipe, maintaining its characteristic umbrella shape. Conclusions: As the concentration of rolipram increased, both cap retraction and gill reduction in XGT2 occurred in a dose-dependent manner. The endogenous cAMP levels in the fruiting bodies were measured before and after rolipram treatment, revealing that the cap retraction and gill reduction in XGT2 progressed in a dose-dependent manner alongside increasing cAMP expression levels. Furthermore, a positive correlation was observed between cAMP levels and rolipram concentration. This study provides a foundation for improving the quality and productivity of mushroom cultivation by manipulating fruiting body characteristics through external stimuli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiwei Zhu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (H.L.); (F.C.); (C.X.); (Y.W.); (C.D.); (Q.M.)
| |
Collapse
|
5
|
Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem 2024; 446:138893. [PMID: 38432137 DOI: 10.1016/j.foodchem.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Modern food chain supply management necessitates the dire need for mitigating food fraud and adulterations. This holistic review addresses different advanced detection technologies coupled with chemometrics to identify various types of adulterated foods. The data on research, patent and systematic review analyses (2018-2023) revealed both destructive and non-destructive methods to demarcate a rational approach for food fraud detection in various countries. These intricate hygiene standards and AI-based technology are also summarized for further prospective research. Chemometrics or AI-based techniques for extensive food fraud detection are demanded. A systematic assessment reveals that various methods to detect food fraud involving multiple substances need to be simple, expeditious, precise, cost-effective, eco-friendly and non-intrusive. The scrutiny resulted in 39 relevant experimental data sets answering key questions. However, additional research is necessitated for an affirmative conclusion in food fraud detection system with modern AI and machine learning approaches.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Owias Iqbal Dar
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
6
|
Barnett LMA, Zhang Q, Sharma S, Alqahtani S, Shannahan J, Black M, Wright C. 3D printer emissions elicit filament-specific and dose-dependent metabolic and genotoxic effects in human airway epithelial cells. Front Public Health 2024; 12:1408842. [PMID: 39071151 PMCID: PMC11273288 DOI: 10.3389/fpubh.2024.1408842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Three-dimensional (3D) printers have become popular educational tools in secondary and post-secondary STEM curriculum; however, concerns have emerged regarding inhalation exposures and associated health risks. Current evidence suggests that filament materials and site conditions may cause differences in the chemical profiles and toxicological properties of 3D printer emissions; however, few studies have evaluated exposures directly in the classroom. In this study, we monitored and sampled particulate matter (PM) emitted from acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA) filaments during a 3-hour 3D printing session in a high school classroom using aerosol monitoring instrumentation and collection media. To evaluate potential inhalation risks, Multiple Path Particle Dosimetry (MPPD) modeling was used to estimate inhaled doses and calculate in vitro concentrations based on the observed aerosol data and specific lung and breathing characteristics. Dynamic light scattering was used to evaluate the hydrodynamic diameter, zeta potential, and polydispersity index (PDI) of extracted PM emissions dispersed in cell culture media. Small airway epithelial cells (SAEC) were employed to determine cellular viability, genotoxic, inflammatory, and metabolic responses to each emission exposure using MTS, ELISA, and high-performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. Aerosol monitoring data revealed that emissions from ABS and PLA filaments generated similar PM concentrations within the ultrafine and fine ranges. However, DLS analysis showed differences in the physicochemical properties of ABS and PLA PM, where the hydrodynamic diameter of PLA PM was greater than ABS PM, which may have influenced particle deposition rates and cellular outcomes. While exposure to both ABS and PLA PM reduced cell viability and induced MDM2, an indicator of genomic instability, PLA PM alone increased gamma-H2AX, a marker of double-stranded DNA breaks. ABS and PLA emissions also increased the release of pro-inflammatory cytokines, although this did not reach significance. Furthermore, metabolic profiling via high performance liquid chromatography-mass spectrometry (HPLC-MS) and subsequent pathway analysis revealed filament and dose dependent cellular metabolic alterations. Notably, our metabolomic analysis also revealed key metabolites and pathways implicated in PM-induced oxidative stress, DNA damage, and respiratory disease that were perturbed across both tested doses for a given filament. Taken together, these findings suggest that use of ABS and PLA filaments in 3D printers within school settings may potentially contribute to adverse respiratory responses especially in vulnerable populations.
Collapse
Affiliation(s)
- LMA Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - Q. Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - S. Sharma
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - S. Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - J. Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - M. Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - C. Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| |
Collapse
|
7
|
Zhu T, Ma Y, Wang J, Xiong W, Mao R, Cui B, Min Z, Song Y, Chen Z. Serum Metabolomics Reveals Metabolomic Profile and Potential Biomarkers in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:235-252. [PMID: 38910282 PMCID: PMC11199150 DOI: 10.4168/aair.2024.16.3.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Asthma is a highly heterogeneous disease. Metabolomics plays a pivotal role in the pathogenesis and development of asthma. The main aims of our study were to explore the underlying mechanism of asthma and to identify novel biomarkers through metabolomics approach. METHODS Serum samples from 102 asthmatic patients and 18 healthy controls were collected and analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. Multivariate analysis and weighted gene co-expression network analysis (WGCNA) were performed to explore asthma-associated metabolomics profile and metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Subsequently, 2 selected serum hub metabolites, myristoleic acid and dodecanoylcarnitine, were replicated in a validation cohort using ultra-high performance LC-MS/MS system (UHPLC-MS/MS). RESULTS Distinct metabolomics profile of asthma was revealed by multivariate analysis. Then, 116 overlapped asthma-associated metabolites between multivariate analysis and WGCNA, including 12 hub metabolites, were identified. Clinical features-associated hub metabolites were also identified by WGCNA. Among 116 asthma-associated metabolites, Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were revealed by KEGG analysis. Furthermore, serum myristoleic acid and dodecanoylcarnitine were significantly higher in asthmatic patients than in healthy controls in validation cohort. Additionally, serum myristoleic acid and dodecanoylcarnitine demonstrated high sensitivities and specificities in predicting asthma. CONCLUSIONS Collectively, asthmatic patients showed a unique serum metabolome. Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were involved in the pathogenesis of asthma. Furthermore, our results suggest the promising values of serum myristoleic acid and dodecanoylcarnitine for asthma diagnosis in adults.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, China
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Jiajia Wang
- Rheumatology Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Medicine and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Bo Cui
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Zhihui Min
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China.
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China.
| |
Collapse
|
8
|
Barosova R, Baranovicova E, Hanusrichterova J, Mokra D. Metabolomics in Animal Models of Bronchial Asthma and Its Translational Importance for Clinics. Int J Mol Sci 2023; 25:459. [PMID: 38203630 PMCID: PMC10779398 DOI: 10.3390/ijms25010459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bronchial asthma is an extremely heterogenous chronic respiratory disorder with several distinct endotypes and phenotypes. These subtypes differ not only in the pathophysiological changes and/or clinical features but also in their response to the treatment. Therefore, precise diagnostics represent a fundamental condition for effective therapy. In the diagnostic process, metabolomic approaches have been increasingly used, providing detailed information on the metabolic alterations associated with human asthma. Further information is brought by metabolomic analysis of samples obtained from animal models. This article summarizes the current knowledge on metabolomic changes in human and animal studies of asthma and reveals that alterations in lipid metabolism, amino acid metabolism, purine metabolism, glycolysis and the tricarboxylic acid cycle found in the animal studies resemble, to a large extent, the changes found in human patients with asthma. The findings indicate that, despite the limitations of animal modeling in asthma, pre-clinical testing and metabolomic analysis of animal samples may, together with metabolomic analysis of human samples, contribute to a novel way of personalized treatment of asthma patients.
Collapse
Affiliation(s)
- Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
9
|
Deng R, Li J, Wu H, Wang M. Mechanistic insight into the adjuvant effect of co-exposure to ultrafine carbon black and high humidity on allergic asthma. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9653-9667. [PMID: 37794280 DOI: 10.1007/s10653-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
10
|
Nan B, Sun X, Yang S, Huang Q, Shen H. Integrative proteomics and metabolomics analysis of non-observable acute effect level PM 2.5 induced accumulative effects in AC16 cells. J Appl Toxicol 2023; 43:1613-1629. [PMID: 37278136 DOI: 10.1002/jat.4500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Chronic exposure to very low ambient PM2.5 has been linked to cardiovascular risks in epidemiological observation, which also brought doubts on its safety threshold. In this study, we approached this question by chronic exposure of AC16 to the non-observable acute effect level (NOAEL) PM2.5 5 μg/mL and its positive reference 50 μg/mL, respectively. The doses were respectively defined on the cell viabilities >95% (p = 0.354) and >90% (p = 0.004) when treated acutely (24 h). To mimic the long-term exposure, AC16 was cultured from the 1st to 30th generations and treated with PM2.5 24 h in every three generations. The integration of proteomic and metabolomic analysis was applied, and 212 proteins and 172 metabolites were significantly altered during the experiments. The NOAEL PM2.5 induced both dose- and time-dependent disruption, which showed the dynamic cellular proteomic response and oxidation accumulation, the main metabolomics changes were ribonucleotide, amino acid, and lipid metabolism that have involved in stressed gene expression, and starving for energy metabolism and lipid oxidation. In summary, these pathways interacted with the monotonically increasing oxidative stress and led to the accumulated damage in AC16 and implied that the safe threshold of PM2.5 may be non-existent when a long-term exposure occurred.
Collapse
Affiliation(s)
- Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
| | - Shijing Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
County-Based PM2.5 Concentrations’ Prediction and Its Relationship with Urban Landscape Pattern. Processes (Basel) 2023. [DOI: 10.3390/pr11030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Satellite top-of-atmosphere (TOA) reflectance has been validated as an effective index for estimating PM2.5 concentrations due to its high spatial coverage and relatively high spatial resolution (i.e., 1 km). For this paper, we developed an emsembled random forest (RF) model incorporating satellite top-of-atmosphere (TOA) reflectance with four categories of supplemental parameters to derive the PM2.5 concentrations in the region of the Yangtze River Delta-Fujian (i.e., YRD-FJ) located in east China. The landscape pattern indices at two levels (i.e., type level and overall level) retrieved from 3-year land classification imageries (i.e., 2016, 2018, and 2020) were used to discuss the correlation between county-based PM2.5 values and landscape pattern. We achieved a cross validation R2 of 0.91 (RMSE = 9.06 μg/m3), 0.89 (RMSE = 10.19 μg/m3), and 0.90 (RMSE = 8.02 μg/m3) between the estimated and observed PM2.5 concentrations in 2016, 2018, and 2020, respectively. The PM2.5 distribution retrieved from the RF model showed a trend of a year-on-year decrease with the pattern of “Jiangsu > Shanghai > Zhejiang > Fujian” in the YRD-FJ region. Our results also revealed that the landscape pattern of farmland, water bodies, and construction land exhibited a highly positive relationship with the county-based average PM2.5 values, as the r coefficients reached 0.74 while the forest land was negatively correlated with the county-based PM2.5 (r = 0.84). There was also a significant correlation between the county-based PM2.5 and shrubs (r = 0.53), grass land (r = 0.76), and bare land (r = 0.60) in the YRD-FJ region, respectively. Three landscape pattern indices at an overall level were positively correlated with county-based PM2.5 concentrations (r = 0.80), indicating that the large landscape fragmentation, edge density, and landscape diversity would raise the PM2.5 pollution in the study region.
Collapse
|
12
|
He S, Li P, Liu L, Li ZH. NMR technique revealed the metabolic interference mechanism of the combined exposure to cadmium and tributyltin in grass carp larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17828-17838. [PMID: 36201083 DOI: 10.1007/s11356-022-23368-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Widespread human activity has resulted in the presence of different pollutants in the aquatic environment that does not exist in isolation. The study of the effects of contamination of aquatic organisms is of great significance. To assess the individual and combined toxicity of cadmium (Cd) and tributyltin (TBT) to aquatic organisms, juvenile grass carp (Ctenopharyngodon idella) were exposed to Cd (2.97 mg/L), TBT (7.5 μg/L), and their mixture MIX. The biological response was evaluated by nuclear magnetic resonance (NMR) analysis of plasma metabolites. Plasma samples at 1, 2, 4, 8, 16, 32, and 48 days post-exposure were analyzed using detection by NMR technique. The typical correlation analysis (CCA) analysis revealed that TBT had the greatest effect on plasma metabolism, followed by MIX and Cd. The interference pathway to grass carp was similar to that of TBT and MIX. Both Cd and TBT exposure alone or in combination can lead to metabolic abnormalities in TCA cycle-related pathways and interfere with energy metabolism. These results provide more detailed information for the metabolic study of pollutants and data for assessing the health risks of Cd, TBT, and MIX at the metabolic level.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
13
|
Liu D, Liu Y, Wang R, Feng L, Xu L, Jin C. Metabolic profiling disturbance of PM 2.5 revealed by Raman spectroscopy and mass spectrometry-based nontargeted metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74500-74511. [PMID: 35639313 DOI: 10.1007/s11356-022-20506-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is an important risk factor affecting human health. Therefore, a quick method for finding metabolic targets in situ in ambient fine particulate matter is crucial. In this study, the impact of PM2.5 on human lung epithelial cells (A549) was investigated by Raman spectroscopy and mass spectrometry (MS)-based nontargeted metabolomics analysis. Raman detection indicated that exposure to PM2.5 reduced the levels of phenylalanine, tyrosine, and nucleotides. Metabolomics results not only demonstrated a significant decrease of the aforementioned metabolites but also added some important metabolite information that could not be detected by Raman spectroscopy. Our study demonstrated that Raman spectroscopy was an in situ, real-time, and rapid detection method for detecting metabolites, especially suitable for the assignment of phenylalanine/tyrosine and nucleotides, which play important roles in cellular growth. Moreover, the metabolic profiling changes observed upon PM2.5 treatment mainly involved phenylalanine, tyrosine metabolism, purine and pyrimidine metabolism, and energy metabolism, clearly demonstrating that PM2.5 can inhibit the synthesis of protein and DNA/RNA and reduce cellular energy supplies, further influencing cellular proliferation and other activities.
Collapse
Affiliation(s)
- Daojie Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumin Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruibing Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengyu Jin
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65100-65111. [PMID: 35484453 DOI: 10.1007/s11356-022-20349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 μg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Hu W, Lu W, Li L, Zhang H, Lee YK, Chen W, Zhao J. Both living and dead Faecalibacterium prausnitzii alleviate house dust mite-induced allergic asthma through the modulation of gut microbiota and short-chain fatty acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5563-5573. [PMID: 33709404 DOI: 10.1002/jsfa.11207] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Asthma is increasingly prevalent worldwide, and novel strategies to prevent or treat this disease are needed. Probiotic intervention has recently been reported to be effective for asthma prevention. Here, we explored the effects of Faecalibacterium prausnitzii on the development of allergic airway inflammation in a murine model of house dust mite (HDM)-induced allergic asthma. RESULTS Supplementation with living and dead F. prausnitzii blocked eosinophil, neutrophil, lymphocyte and macrophage influx and alleviated the pathological changes. Moreover, both living and dead F. prausnitzii administration decreased the levels of interleukin (IL)-4, IL-5, IL-13 and immunoglobulin G1, elevated regulatory T cell (Tregs) ratio, improved microbial dysbiosis and enhanced short-chain fatty acid (SCFA) production. Network correlation analysis revealed that the immune indicators were strongly associated with SCFA production. Based on the linear discriminant analysis effect size, Turicibacter was found to be the core genus related to HDM-induced asthma. Living F. prausnitzii treatment enriched Faecalibaculum, Dubosiella and Streptococcus, while dead F. prausnitzii treatment increased Muribaculaceae and Parabacteroides. Interestingly, both living and dead F. prausnitzii administration enriched Lachnoclostridium and normalized the pathways involving carbohydrate and lipid metabolism, which might be related to SCFA production. CONCLUSION Faecalibacterium prausnitzii exerts an anti-asthmatic effect partly by gut microbiota modulation and SCFA production, suggesting its potential as a probiotic agent for allergic asthma prevention. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenbing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Yuan-Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Wang C, Jiang S, Zhang S, Ouyang Z, Wang G, Wang F. Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Siyu Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Zhuoer Ouyang
- Department of Cellular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| |
Collapse
|
17
|
A rapid GC method coupled with quadrupole or time of flight mass spectrometry for metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122355. [PMID: 32920480 DOI: 10.1016/j.jchromb.2020.122355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) is an ideal tool for analyzing the intermediates of tricarboxylic acid cycle and glycolysis, sugars, organic acids and amino acids, etc. High-throughput metabolomics methods are required by large-scale clinical researches, and time of flight mass spectrometry (TOF MS) having fast scanning rate is preferable for rapid GC. Quadrupole MS (qMS) instruments have 95% market share, and their potential in rapid metabolomics is worth being studied. In this work, a within 15-min GC program was established and matched by qMS scanning for plasma metabolome analysis after N-methyl-N-(trimethylsilyl)-trifluoroacetamide derivatization. Compared to the longer-time program GC-qMS method, the rapid GC-qMS method had nearly no metabolome information loss, and it had excellent profile performance in repeatability, intra-day and inter-day precision, sampling range, linearity and extraction recovery. Compared to TOF MS, qMS achieved similar results in investigating lung cancer serum metabolic disruptions. Partial least squares-discriminant analysis revealed that the two datasets acquired by qMS and TOF MS had very similar model parameters, and most of top ranked differential metabolites were the same. This study provides a rapid and economical GC-qMS metabolomics method for researchers. Still, MS having faster scanning rate and higher sensitivity are recommended, if possible, to detect more small peaks and some co-eluted peaks.
Collapse
|
18
|
Li J, Hu Y, Liu L, Wang Q, Zeng J, Chen C. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137432. [PMID: 32169651 DOI: 10.1016/j.scitotenv.2020.137432] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) have become a major public health concern because of their adverse effects on health. Lungs are considered the primary organ affected by PM2.5. In order to understand the mechanism underlying PM2.5-induced lung injury, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis were conducted to investigate the impact of PM2.5 exposure on lung microbiome and its metabolic profile. Mice were exposed to PM2.5 through intratracheal instillation and a lung injury model was established. 16S rRNA gene sequencing indicated that PM2.5 exposure significantly altered the richness, evenness, and composition of the lung microbiome. Metabolomics profiling showed that the levels of lung metabolites were perturbed after PM2.5 exposure. The altered metabolites mainly belonged to metabolic pathways, such as the citrate cycle, glyoxylate and dicarboxylate metabolism, pyruvate metabolism, purine and pyrimidine metabolism, and valine, leucine, and isoleucine metabolism. The altered lung microbiota showed significant correlations with lung metabolites. The levels of fumaric acid negatively correlated with the relative abundance of Ruminococcaceae, Enterobacteriaceae, and Pseudomonadaceae. These results revealed that PM2.5 exposure not only significantly altered the lung microbiome composition but also perturbed a number of metabolites involved in diverse metabolic pathways. This study improves our understanding of the mechanism of lung injury after PM2.5 exposure.
Collapse
Affiliation(s)
- Jingli Li
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Yiran Hu
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Lingjing Liu
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Qiang Wang
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Jiahao Zeng
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou 325000, Zhejiang, China; The Interventional Pulmonary Key Laboratory of Zhejiang Province, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
19
|
Jiang Q, Zhang C, Chen S, Shi L, Li DC, Lv N, Cui L, Chen Y, Zheng Y. Particulate Matter 2.5 Induced Developmental Cardiotoxicity in Chicken Embryo and Hatchling. Front Pharmacol 2020; 11:841. [PMID: 32581800 PMCID: PMC7289969 DOI: 10.3389/fphar.2020.00841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate matter poses health risk to developing organisms. To investigate particulate matters with a diameter smaller than 2.5 um (PM2.5)-induced developmental cardiotoxicity, fertile chicken eggs were exposed to PM2.5 via air cell injection at doses of 0.05, 0.2, 0.5, 2, and 5 mg/egg kg. Morphological changes in the embryonic day four (ED4) and hatchling hearts were assessed with histological techniques. Heart rates of hatchling chickens were measured with electrocardiography. The protein expression levels of nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-kb p65), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9) were assessed with immunohistochemistry or western blotting in hatchling hearts. PM2.5 exposure elevated areas of heart in ED4 embryo, increased heart rate, and thickened right ventricular wall thickness in hatchling chickens. Immunohistochemistry revealed enhanced NF-kb p65 expression in hatchling hearts. Western blotting results indicated that both iNOS and MMP9 expression were enhanced by lower doses of PM2.5 exposure (0.2 and 0.5 mg/kg) but not 2 mg/kg. In summary, developmental exposure to PM2.5 induced developmental cardiotoxicity in chicken embryo and hatchling chickens, which is associated with NF-kb p65, iNOS, and MMP9.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dao Chuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanxia Chen
- Department of Occupational Diseases, Occupational Disease Center, Qingdao Central Hospital, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Reyes-Caballero H, Rao X, Sun Q, Warmoes MO, Lin P, Sussan TE, Park B, Fan TWM, Maiseyeu A, Rajagopalan S, Girnun GD, Biswal S. Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice. Sci Rep 2019; 9:17423. [PMID: 31757983 PMCID: PMC6874681 DOI: 10.1038/s41598-019-53716-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Exposure to ambient air particulate matter (PM2.5) is well established as a risk factor for cardiovascular and pulmonary disease. Both epidemiologic and controlled exposure studies in humans and animals have demonstrated an association between air pollution exposure and metabolic disorders such as diabetes. Given the central role of the liver in peripheral glucose homeostasis, we exposed mice to filtered air or PM2.5 for 16 weeks and examined its effect on hepatic metabolic pathways using stable isotope resolved metabolomics (SIRM) following a bolus of 13C6-glucose. Livers were analyzed for the incorporation of 13C into different metabolic pools by IC-FTMS or GC-MS. The relative abundance of 13C-glycolytic intermediates was reduced, suggesting attenuated glycolysis, a feature found in diabetes. Decreased 13C-Krebs cycle intermediates suggested that PM2.5 exposure led to a reduction in the Krebs cycle capacity. In contrast to decreased glycolysis, we observed an increase in the oxidative branch of the pentose phosphate pathway and 13C incorporations suggestive of enhanced capacity for the de novo synthesis of fatty acids. To our knowledge, this is one of the first studies to examine 13C6-glucose utilization in the liver following PM2.5 exposure, prior to the onset of insulin resistance (IR).
Collapse
Affiliation(s)
- Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Qiushi Sun
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Marc O Warmoes
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Penghui Lin
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Tom E Sussan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
- Public Health Center, Toxicology Directorate, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Teresa W-M Fan
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Geoffrey D Girnun
- Department of Pharmacological Sciences, Stony Brook University, BST 8-140, Stony Brook, NY, 11794, USA
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Wang Z, Gao S, Xie J, Li R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of liver tissue in mice with OVA-induced asthma exposed to PM 2.5. CHEMOSPHERE 2019; 234:277-286. [PMID: 31220661 DOI: 10.1016/j.chemosphere.2019.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) exposure increases the risk of asthma. However, the effect of PM2.5 exposure on liver metabolism in mice with asthma symptoms remains unclear. We established an ovalbumin (OVA)-induced asthma model in mice and divided the animals into four groups: control group (C), PM2.5 exposure group (P), OVA-induced asthma group (O) and OVA-induced asthma PM2.5 exposure group (OP). Gas chromatography-mass spectrometry (GC-MS) was used to identify the metabolite markers and related perturbed metabolic pathways in mouse liver tissue after PM2.5 exposure. Multivariate analysis showed 9 and 12 potential metabolite markers in the P and OP groups, respectively, after PM2.5 exposure that were significantly correlated with lipid peroxidation indices. PM2.5 exposure perturbed 5 and 7 metabolic pathways in the P and OP groups, respectively. These metabolic pathways mainly involve the lipid metabolism, amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. These results highlight the potential to study PM2.5-triggered alterations via liver tissue in normal and OVA-induced asthmatic mice to gain a more realistic appraisal of the resulting early toxicity events. Additionally, these results revealed potential metabolite markers of early antioxidant defense events triggered by PM2.5 and indicated that metabolite markers are more sensitive than antioxidant indicators.
Collapse
Affiliation(s)
- Zhentao Wang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Shaolong Gao
- State Environmental Protection Key Laboratory on Efficient Resource-utilization Techniques of Coal Waste, Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Jingfang Xie
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| |
Collapse
|
22
|
Xiong Y, Hu S, Zhou H, Zeng H, He X, Huang D, Li X. High-throughput 16S rDNA sequencing of the pulmonary microbiome of rats with allergic asthma. Genes Dis 2019; 7:272-282. [PMID: 32215297 PMCID: PMC7083718 DOI: 10.1016/j.gendis.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/20/2019] [Indexed: 02/01/2023] Open
Abstract
A decrease in microbial infection in adolescents is implicated with an increase in the incidence of asthma and allergic diseases in adulthood, indicating that the microbiome plays a critical role in asthma. However, the microbial composition of the lower respiratory tract remains unclear, hindering the further exploration of the pathogenesis of asthma. This study aims to explore the microbial distribution and composition in the lungs of normal rats and rats with allergic asthma via 16S rDNA sequencing. The DNA of the pulmonary microbiome was extracted from the left lungs collected from normal control group (NC), saline control group (SC), and allergic asthma group (AA) under aseptic conditions. After the 16s rDNA V4—V5 region was amplified, the products were sequenced using Illumina high-throughput technology and subjected to operational taxonomic unit (OTU) cluster and taxonomy analysis. The OTU values of AA increased significantly compared with those of NC and SC. Microbiome structure analysis showed that the dominant phylum of the pulmonary microbiome changed from Proteobacteria in NC to Firmicutes in AA. Linear discriminant analysis indicated that the key microbiomes involved in the three groups varied. Numerous microbiomes stably settled in the lungs of the rats in NC and AA. The structure and diversity of the pulmonary microbiome in AA differed from those in NC.
Collapse
Affiliation(s)
- Yang Xiong
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Sen Hu
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401331, China
| | - Hui Zeng
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan He
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dongni Huang
- Department of Obstetrics, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Center, Chongqing Medical University, Chongqing, 401331, China
- Corresponding author.
| |
Collapse
|