1
|
Liu S, Gao PF, Li S, Fu H, Wang L, Dai Y, Fu M. A review of the recent progress in biotrickling filters: packing materials, gases, micro-organisms, and CFD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125398-125416. [PMID: 38012483 DOI: 10.1007/s11356-023-31004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Pan-Feng Gao
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| | - Shubiao Li
- Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen, 361000, China
| | - Haiyan Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Liyong Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yuan Dai
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Muxing Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
2
|
Nayyeri H, Ghanavati H, Mazaheri H, Joshaghani AH. Simultaneous biodegradation of BTX by isolated degrading bacterial strains in a newly designed modulated bio-scrubber assisted to airlift parallel bioreactors. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:11-27. [PMID: 35669806 PMCID: PMC9163249 DOI: 10.1007/s40201-021-00726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
A new approach in this present study, isolated bacteria from refinery sludge were used in a laboratory-scale bio-scrubber, connecting with two parallel airlift bioreactors to eliminate harmful and toxic fumes of BTX. One of the main features of this bio-scrubber is using porous mineral pumice fillers (Lava Rock) inside poly-urethane foam (PUF) module tower, connecting with agitator bio-phasic continuously stirred tank bio-reactor (CSTbR) to increase retention time and contact surface. The bio-scrubber and airlift plug flow bio-reactor (PFbR) were used in parallel with cooling flow to be more efficient in preservation of the corresponding heater and endothermic from removal reactions. Performance of bio-scrubber in removing BTX vapors with 10 % silicone oil and grade 350 poise as organic phase in the inlet concentration range of 180 ± 0.3 to 1950.5 ± 0.1 mg /m3 (ppmv) for up to 6 months in two air flow rate's 2.5 and 3.5 (lit/min) that each treatment lasted about 2 months. The rate of biodegradation in this study was carried out by mixing 3 isolated bacteria, obtaining from refinery sludge, named DBIS-03, DTIS-12, and DXIS-09, which they had highest biodegradability than all the isolated strains. The results of BTX biodegradation at each EBRT (Empty Bed Retention Time) showed that the removal efficiency of BTX with isolated bacterial samples was able to grow and multiply on porous fillers and regenerate the growth medium of autotrophic bacterial strain with O2 gas and micronutrients from contaminated air flow with minimum concentration. Benzene, toluene and xylene inputs maximum concentration over a period of 20 days loading, respectively: B :99.2 % (at 2.5 lit/min and 183.2 ± 0.2 mg /m3 (ppmv)), T: 98 % (at 2.5 lit/min and 327.1 ± 0.1 mg /m3 ( ppmv)) and X: 85.9 % (at 2.5 lit/min and 296.8 ± 0.8 mg /m3 (ppmv)) compared to 3.5 lit/min and so show the best performance in removing BTX from polluted air in period of 30 days.
Collapse
Affiliation(s)
- Hamed Nayyeri
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hossein Ghanavati
- Microbial Biotechnology Department, Agricultural Research, Extension, and Education Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Hossein Mazaheri
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | | |
Collapse
|
3
|
Wang Z, Wang Y, Gomes RL, Gomes HI. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128122. [PMID: 34979385 DOI: 10.1016/j.jhazmat.2021.128122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential element with application in manufacturing from food to medical industries. Water contamination by Se is of concern due to anthropogenic activities. Recently, Se remediation has received increasing attention. Hence, different types of remediation techniques are listed in this work, and their potential for Se recovery is evaluated. Sorption, co-precipitation, coagulation and precipitation are effective for low-cost Se removal. In photocatalytic, zero-valent iron and electrochemical systems, the above mechanisms occur with reduction as an immobilization and detoxification process. In combination with magnetic separation, the above techniques are promising for Se recovery. Biological Se oxyanions reduction has been widely recognized as a cost-effective method for Se remediation, simultaneously generating biosynthetic Se nanoparticles (BioSeNPs). Increasing the extracellular production of BioSeNPs and controlling their morphology will benefit its recovery. However, the mechanism of the microbial production of BioSeNPs is not well understood. Se containing products from both microbial reduction and abiotic methods need to be refined to obtain pure Se. Eco-friendly and cost-effective Se refinery methods need to be developed. Overall, this review offers insight into the necessity of shifting attention from Se remediation to Se recovery.
Collapse
Affiliation(s)
- Zhongli Wang
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Yanming Wang
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Helena I Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Lai CY, Wu M, Wang Y, Zhang J, Li J, Liu T, Xia J, Yuan Z, Guo J. Cross-feeding interactions in short chain gaseous alkane-driven perchlorate and selenate reduction. WATER RESEARCH 2021; 200:117215. [PMID: 34020333 DOI: 10.1016/j.watres.2021.117215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Short chain gaseous alkanes (SCGAs) mainly consist of methane (CH4), ethane (C2H6), propane (C3H8) and butane (C4H10). The first three SCGAs have been shown to remove perchlorate (ClO4-) and selenate (SeO42-), yet it is unknown whether C4H10 is available to reduce these contaminants. This study demonstrated that C4H10 fed biofilms were capable of reducing ClO4- and SeO42- to chloride (Cl-) and elemental selenium (Se0), respectively, by employing two independent membrane biofilms reactors (MBfRs). Batch tests showed that C4H10 and oxygen fed biofilms had much higher ClO4- and SeO42- reduction rates and enhanced expression levels of bmoX and pcrA than that without C4H10 or O2. Polyhydroxyalkanoates (PHA) accumulated in the biofilms when C4H10 was supplied, and they decomposed for driving ClO4- and SeO42- reduction when C4H10 was absent. Moreover, we revisited the literature and found that a cross-feeding pathway seems to be universal in microaerobic SCGA-driven perchlorate and selenate reduction processes. In the ClO4--reducing MBfRs, Mycobacterium primarily conducts C2H6 and C3H8 oxidation in synergy with Dechloromonas who performs perchlorate reduction, while both Mycobacterium and Rhodococcus carried out C4H10 oxidation with perchlorate-respiring Azospira as the partner. In the SeO42--reducing MBfRs, Mycobacterium oxidized C2H6 solely or oxidized C3H8 jointly with Rhodococcus, while Burkholderiaceae likely acted as the selenate-reducing bacterium. When C4H10 was supplied as the electron donor, both Mycobacterium and Rhodococcus conducted C4H10 oxidation in synergy with unknow selenate-reducing bacterium. Collectively, we confirm that from CH4 to C4H10, all SCGAs could be utilized as electron donors for bio-reduction process. These findings offer insights into SCGA-driven bio-reduction processes, and are helpful in establishing SCGA-based technologies for groundwater remediation.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiongbin Zhang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jiahui Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Tan C, Zeng Q, Zhu G, Ning Y, Zhu X, Zhang P, Yan N, Zhang Y, Rittmann BE. Characteristics of denitrification in a vertical baffled bioreactor. ENVIRONMENTAL RESEARCH 2021; 197:111046. [PMID: 33745931 DOI: 10.1016/j.envres.2021.111046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
A vertical baffled bioreactor (VBBR) was employed for tertiary denitrification. Its features were designed to minimize the demand for externally supplied electron donor by minimizing net biomass synthesis and oxygen respiration. Over a two-year period, complete denitrification was realized routinely in the VBBR. The nitrate-removal rate was proportion to the influent COD/N ratio, with complete denitrification possible for COD/N ratios >3 gCOD/gN. Batch kinetic tests carried out at the end of years 1 and 2 documented that supplied electron donor was oxidized in the first 1-2 h, but nitrate and nitrite reductions occurred predominantly after 2 h and were driven by internally stored electron donor. Measurements confirmed that the VBBR minimized the demand of added electron donor: The observed yield was only 0.05 mgVSS/mgCOD, and the COD demand for O2 respiration was only 1-6.7% of the COD demand for N reductions. Biofilm samples taken from the upper and lower ports in cylinder of VBBR had similarly high alpha diversity and dominant genera, but the upper biofilm had a denitrification rate about 70% greater than the lower biofilm. The higher denitrification rate in the upper biofilm correlated its higher content of active biomass.
Collapse
Affiliation(s)
- Chong Tan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Qiuyu Zeng
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Yanning Ning
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Xiaohui Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Peipei Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
6
|
Eregowda T, Kokko ME, Rene ER, Rintala J, Lens PNL. Volatile fatty acid production from Kraft mill foul condensate in upflow anaerobic sludge blanket reactors. ENVIRONMENTAL TECHNOLOGY 2021; 42:2447-2460. [PMID: 31928330 DOI: 10.1080/09593330.2019.1703823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The utilization of foul condensate (FC) collected from a Kraft pulp mill for the anaerobic production of volatile fatty acids (VFA) was tested in upflow anaerobic sludge blanket (UASB) reactors operated at 22, 37 and 55°C at a hydraulic retention time (HRT) of ∼75 h. The FC consisted mainly of 11370, 500 and 592 mg/L methanol, ethanol and acetone, respectively. 42-46% of the organic carbon (methanol, ethanol and acetone) was utilized in the UASB reactors operated at an organic loading of ∼8.6 gCOD/L.d and 52-70% of the utilized organic carbon was converted into VFA. Along with acetate, also propionate, isobutyrate, butyrate, isovalerate and valerate were produced from the FC. Prior to acetogenesis of FC, enrichment of the acetogenic biomass was carried out in the UASB reactors for 113 d by applying operational parameters that inhibit methanogenesis and induce acetogenesis. Activity tests after 158 d of reactor operation showed that the biomass from the 55°C UASB reactor exhibited the highest activity after the FC feed compared to the biomass from the reactors at 22 and 37°C. Activity tests at 37°C to compare FC utilization for CH4 versus VFA production showed that an organic carbon utilization >98% for CH4 production occurred in batch bottles, whereas the VFA production batch bottles showed 51% organic carbon utilization. Furthermore, higher concentrations of C3-C5 VFA were produced when FC was the substrate compared to synthetic methanol rich wastewater.
Collapse
Affiliation(s)
- Tejaswini Eregowda
- UNESCO-IHE, Institute for Water Education, Delft, Netherlands
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Marika E Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, Delft, Netherlands
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, Netherlands
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Jugnia LB, Manno D, Vidales AG, Hrapovic S, Tartakovsky B. Selenite and selenate removal in a permeable flow-through bioelectrochemical barrier. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124431. [PMID: 33189466 DOI: 10.1016/j.jhazmat.2020.124431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrated the removal of selenite and selenate in flow-through permeable bioelectrochemical barriers (microbial electrolysis cells, MECs). The bioelectrochemical barriers consisted of cathode and anode electrode compartments filled with granular carbon or metallurgical coke. A voltage of 1.4 V was applied to the electrodes to enable the bioelectrochemical removal of selenium species. For comparison, a similarly designed permeable anaerobic biobarrier filled with granular carbon was operated without voltage. All biobarrier setups were fed with water containing up to 5,000 µg L-1 of either selenite or selenate and 70 mg L-1 of acetate as a source of organic carbon. Significant removal of selenite and selenate was observed in MEC experimental setups, reaching 99.5-99.8% over the course of the experiment, while in the anaerobic biobarrier the removal efficiency did not exceed 88%. By simultaneously operating several setups and changing operating parameters (selenium species, influent Se and acetate concentrations, etc.) we demonstrated enhanced removal of Se species under bioelectrochemical conditions.
Collapse
Affiliation(s)
- Louis-B Jugnia
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.
| | - Dominic Manno
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Abraham Gomez Vidales
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Sabahudin Hrapovic
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Boris Tartakovsky
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
8
|
Eregowda T, Rene ER, Matanhike L, Lens PNL. Effect of selenate and thiosulfate on anaerobic methanol degradation using activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29804-29811. [PMID: 31965493 DOI: 10.1007/s11356-020-07597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic bioconversion of methanol was tested in the presence of selenate (SeO42-), thiosulfate (S2O32-), and sulfate (SO42-) as electron acceptors. Complete SeO42- reduction occurred at COD:SeO42- ratios of 12 and 30, whereas ~ 83% reduction occurred when the COD:SeO42- ratio was 6. Methane production did not occur at the three COD:SeO42- ratios investigated. Up to 10.1 and 30.9% of S2O32- disproportionated to SO42- at COD:S2O32- ratios of 1.2 and 2.25, respectively, and > 99% reduction was observed at both ratios. The presence of S2O32- lowered the methane production by 73.1% at a COD:S2O32- ratio of 1.2 compared to the control (no S2O32-). This study showed that biogas production was not preferable for SeO42- and S2O32--rich effluents and volatile fatty acid production could be a potential resource recovery option.
Collapse
Affiliation(s)
- Tejaswini Eregowda
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands.
| | - Luck Matanhike
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
9
|
Cheng Y, Li X, Liu H, Yang C, Wu S, Du C, Nie L, Zhong Y. Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters. CHEMOSPHERE 2020; 252:126490. [PMID: 32220715 DOI: 10.1016/j.chemosphere.2020.126490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/18/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Hydrophilic VOCs (volatile organic compounds) were applied to explore their positive influence on the elimination of the single hydrophobic VOC in biotrickling filters (BTFs). Comparison experiments were carried to evaluate the effect of 4-methyl-2-pentanone and toluene on the performance of BTFs for n-hexane removal. The results showed that the existence of 4-methyl-2-pentanone improved the removal performance of BTFs at short gas empty bed contact time (EBRT) of 15 s and low temperature of 10 °C. The degradation of n-hexane in the presence of 4-methyl-2-pentanone was slightly enhanced with a loading ratio of 6:1. When the mixing ratio was greater than 4, toluene significantly promoted the biodegradation of n-hexane with toluene loading rate less than 10 g m-3 h-1. Additionally, The promotion effect was not only reflected in the contents of proteins and polysaccharides, but also in the growth rates of microorganisms in biofilms. This work discussed the detailed effect between n-hexane and hydrophilic VOCs in BTFs, which would contribute to develop a more economical method to improve the removal performance of hydrophobic VOCs in BTFs.
Collapse
Affiliation(s)
- Yeting Cheng
- College of Environmental Science and Engineering, Hunan University, And Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University, And Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China
| | - Haiyang Liu
- Datang Environment Industry Group Co., Ltd., Beijing, 100097, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, And Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University, And Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Lijun Nie
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Yuanyuan Zhong
- Guangdong Provincial Key Laboratory of Petrochemcial Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| |
Collapse
|
10
|
Zhao X, Zhang G, Zhang Z. TiO 2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects. ENVIRONMENT INTERNATIONAL 2020; 136:105453. [PMID: 31924583 DOI: 10.1016/j.envint.2019.105453] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 05/22/2023]
Abstract
Nowadays, an increasing discharge of oxyanions to the natural environment has been attracting worldwide attention. TiO2-based photocatalysis is regarded as one of the most promising technologies for the conversion of toxic oxyanions (such as chromate, nitrate, nitrite, bromate, perchlorate and selenate) to harmless and/or less toxic substances in contaminated waters. Various types of TiO2-based catalysts have been developed, and each of them exhibits its own advantages in catalytic reduction of oxyanions. However, the application of these nanostructured TiO2 in real water bodies remains a challenge, with limitations associated with sunlight harvesting abilities, production costs, reuse stability and exposure risks. Herein, we aim to present a critical review on reported TiO2-based photocatalytic reduction of aqueous oxyanions, provide a comprehensive understanding of the possible reaction pathways of formed active species, and evaluate the reduction performance of different types of TiO2-based catalysts. In addition, the impact of operating parameters (such as solution pH, temperature, dissolved oxygen and coexisting substances) on catalytic reduction performance is discussed. Furthermore, the perspectives of TiO2-based photocatalytic reduction of oxyanions are also proposed.
Collapse
Affiliation(s)
- Xuesong Zhao
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Guan Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Zhenghua Zhang
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|