1
|
Shi W, Schooling CM, Leung GM, Zhao JV. Early-life exposure to ambient air pollutants and kidney function in adolescents: a cohort study based on the 'Children of 1997' Hong Kong birth cohort. Public Health 2024; 230:59-65. [PMID: 38507917 DOI: 10.1016/j.puhe.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Air pollution is increasingly linked to impaired kidney function in adults. However, little is known about how early-life exposure to air pollutants affects kidney function in adolescents. STUDY DESIGN Cohort study. METHODS We leveraged data from the 'Children of 1997' Hong Kong population-representative birth cohort (N = 8327). Residential exposure to average ambient levels of four air pollutants, including inhalable particle (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and nitrogen monoxide (NO), during in utero, infancy, and childhood periods was estimated using the inverse distance weighting. Kidney function was assessed using estimated glomerular filtration rate (eGFR) calculated from age-adjusted equations for adolescents. Generalized linear regression was used to examine the association of air pollutant exposure in each period with kidney function at 17.6 years. Two-pollutant models tested the robustness of the association. RESULTS Of the 3350 participants included, 51.4% were boys. Exposure to PM10 was associated with poorer kidney function. Each interquartile range increment in PM10 was inversely associated with eGFR (β: -2.933, 95% confidence interval -4.677 to -1.189) in utero, -2.362 (-3.992 to -0.732) infancy, -2.708 (-4.370 to -1.047) childhood, and -2.828 (-4.409 to -1.247) overall. Exposure to PM10 and SO2in utero had a stronger inverse association with kidney function in males. The associations were robust to PM10 exposure in two-pollutant models. CONCLUSIONS Our findings suggest that early-life exposure to ambient PM10 and SO2 is associated with reduced kidney function in adolescents, especially exposure in utero.
Collapse
Affiliation(s)
- W Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - C M Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - G M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Tan Y, Han S, Chen Y, Wu Z, Lee SC. Long-term variation and evaluation of air quality across Hong Kong. J Environ Sci (China) 2023; 127:284-294. [PMID: 36522060 DOI: 10.1016/j.jes.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/17/2023]
Abstract
Study of Air Quality Objectives (AQOs) and long-term changes of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, 10-year variations of six major air pollutants were analyzed at seven monitoring sites in Hong Kong. The continuous decrease of annual averaged concentrations of NO2, SO2, CO, PM2.5 and PM10 and numbers of days with severe pollution conditions validated the efficiency of the series of air pollution control schemes implemented by the Hong Kong government. However, there is still a big gap to meet the ultimate targets described by the World Health Organization. Besides, the concentration of O3 at roadside and urban stations increased by 135% ± 25% and 37% ± 18% from 2011 to 2020, respectively, meanwhile the highest 8 hr averaged O3 concentration was observed as 294 µg/m3 at background station in 2020, which pointed out the increasing ozone pollution in Hong Kong. There was a great decrease in the annual times of air quality health index (AQHI) laying in "high", "very high" and "serious" categories from 2011 to 2020 with the decrease rate of 89.70%, 91.30% and 89.74% at roadside stations, and 79.03%, 95.98% and 72.73% at urban stations, respectively. Nevertheless, the number of days categorized as "high" or above at roadside station was twice more than that in the urban station during the past ten years. Thus, more policies and attentions should be given to the roadside air quality and its adverse health effect to pedestrians on street.
Collapse
Affiliation(s)
- Yan Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Shuwen Han
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yi Chen
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
| |
Collapse
|
3
|
Mueller N, Anderle R, Brachowicz N, Graziadei H, Lloyd SJ, de Sampaio Morais G, Sironi AP, Gibert K, Tonne C, Nieuwenhuijsen M, Rasella D. Model Choice for Quantitative Health Impact Assessment and Modelling: An Expert Consultation and Narrative Literature Review. Int J Health Policy Manag 2023; 12:7103. [PMID: 37579425 PMCID: PMC10461835 DOI: 10.34172/ijhpm.2023.7103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/28/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Health impact assessment (HIA) is a widely used process that aims to identify the health impacts, positive or negative, of a policy or intervention that is not necessarily placed in the health sector. Most HIAs are done prospectively and aim to forecast expected health impacts under assumed policy implementation. HIAs may quantitatively and/ or qualitatively assess health impacts, with this study focusing on the former. A variety of quantitative modelling methods exist that are used for forecasting health impacts, however, they differ in application area, data requirements, assumptions, risk modelling, complexities, limitations, strengths, and comprehensibility. We reviewed relevant models, so as to provide public health researchers with considerations for HIA model choice. METHODS Based on an HIA expert consultation, combined with a narrative literature review, we identified the most relevant models that can be used for health impact forecasting. We narratively and comparatively reviewed the models, according to their fields of application, their configuration and purposes, counterfactual scenarios, underlying assumptions, health risk modelling, limitations and strengths. RESULTS Seven relevant models for health impacts forecasting were identified, consisting of (i) comparative risk assessment (CRA), (ii) time series analysis (TSA), (iii) compartmental models (CMs), (iv) structural models (SMs), (v) agent-based models (ABMs), (vi) microsimulations (MS), and (vii) artificial intelligence (AI)/machine learning (ML). These models represent a variety in approaches and vary in the fields of HIA application, complexity and comprehensibility. We provide a set of criteria for HIA model choice. Researchers must consider that model input assumptions match the available data and parameter structures, the available resources, and that model outputs match the research question, meet expectations and are comprehensible to end-users. CONCLUSION The reviewed models have specific characteristics, related to available data and parameter structures, computational implementation, interpretation and comprehensibility, which the researcher should critically consider before HIA model choice.
Collapse
Affiliation(s)
- Natalie Mueller
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rodrigo Anderle
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Salvador, Brazil
| | | | - Helton Graziadei
- School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, Brazil
| | | | | | - Alberto Pietro Sironi
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Salvador, Brazil
| | - Karina Gibert
- Intelligent Data Science and Artificial Intelligence Research Center, Universitat Politècnica de Catalunya (IDEAI-UPC), Barcelona, Spain
| | - Cathryn Tonne
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Davide Rasella
- ISGlobal, Barcelona, Spain
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Salvador, Brazil
- Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Mueller N, Westerby M, Nieuwenhuijsen M. Health impact assessments of shipping and port-sourced air pollution on a global scale: A scoping literature review. ENVIRONMENTAL RESEARCH 2023; 216:114460. [PMID: 36191619 DOI: 10.1016/j.envres.2022.114460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Globalisation has led to international trade expand rapidly. Seaborne transport moves 80% of traded goods across the globe, producing around 3% of greenhouse gases and other hazardous pollutants, such as PM, NOx and SOx, known to be harmful to health. METHODS A scoping literature review was conducted reviewing peer-reviewed studies on health impact assessments (HIA) of global shipping and port-sourced air pollution. For review inclusion, studies had to (1) use a HIA methodology; (2) quantify the air pollution concentration attributable to at least one shipping or port activity scenario; (3) assess at least one health outcome (i.e. epidemiological measure or monetization); (4) quantify the attributable health burden of the respective scenario. RESULTS Thirty-two studies were included, studying predominantly European Sea shipping/ port-sourced emissions with health impacts for global or respective European populations. Also, Global, Asian, North American and Australian Sea shipping/ port-sourced emissions were studied, with attributable health impacts for global or respective populations. The health outcome predominantly studied was mortality (all-cause, cause-specific, loss in life expectancy, years of life lost (YLLs)), but also morbidity (disease cases, hospital admissions, years lived with disability (YLDs)), disability-adjusted life-years (DALYs), restricted activity days and work loss days. The highest air pollution concentrations were identified along major shipping routes and ports, and the strongest health impacts occurred among respective riparian populations. Globally, ∼265,000 premature deaths were projected for 2020 (∼0.5% of global mortality) attributable to global shipping-sourced emissions. Emission control scenarios studied were predominantly sulphur fuel content caps and NOx emission reduction scenarios, consisting of technological interventions, cleaner fuels or fuel switches, and were assessed as effective in reducing shipping-sourced emissions, and hence, health burdens. CONCLUSIONS Our review positions maritime transport an important source of air pollution and health risk factor, which needs more research and policy attention and rigorous emission control efforts, as shipping-sourced emissions are projected to increase with increases in global trade and shipping volumes.
Collapse
Affiliation(s)
- Natalie Mueller
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | | | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
5
|
Wang B, Yao X, Jiang Y, Sun C, Shabaz M. Design of a Real-Time Monitoring System for Smoke and Dust in Thermal Power Plants Based on Improved Genetic Algorithm. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7212567. [PMID: 34306598 PMCID: PMC8266456 DOI: 10.1155/2021/7212567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
The major health hazards from smoke and dust are due to microscopic fine particles present in smoke as well as in dust. These fine particles, which are microscopic in nature, can penetrate into human lungs and give rise to a range of health problems such as irritation in eyes, a runny nose, throat infection, and chronic cardiac and lung diseases. There is a need to device such mechanisms that can monitor smoke in thermal power plants for timely control of smoke that can pollute air and affects adversely the people living nearby the plants. In order to solve the problems of low accuracy of monitoring results and long monitoring time in conventional methods, a real-time smoke and dust monitoring system in thermal power plants is proposed, which makes use of modified genetic algorithm (GA). The collection and calibration of various monitoring parameters are accomplished through sampling control. The smoke and dust emission real-time monitoring subsystems are employed for the monitoring in an accurate manner. A dual-channel TCP/IP protocol is used between remote and local controlling modules for secure and speedy communication of the system. The generic GA is improved on the basis of the problem statement, and the linear programming model is used to avoid the defect of code duplication with genetic operations. The experimental results show that the proposed smoke and dust monitoring system can effectively improve the accuracy of the monitoring results and also reduce the time complexity by providing solutions in a faster manner. The significance of the proposed technique is to provide a reliable basis for the smoke and dust emission control of thermal power plants for safeguarding the human health.
Collapse
Affiliation(s)
- Bo Wang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150000, China
- School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Xuliang Yao
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150000, China
| | - Yongqing Jiang
- School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Chao Sun
- School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Mohammad Shabaz
- Arba Minch University, Arba Minch, Ethiopia
- School of Computer Science Engineering, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Lee KH, Bae MS. Discrepancy between scientific measurement and public anxiety about particulate matter concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143980. [PMID: 33341609 DOI: 10.1016/j.scitotenv.2020.143980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
This study presents the characteristics and relevance of air quality in the sensitive public environment by analyzing scientific observations and social data detailing the present status of particulate matter (PM) concentrations alongside the changes in the public perception. By projecting time-series data under the same conditions over long periods of time, the difference between the clarity in the information provided by the media and scientific data was quantified, and the patterns in these fields were identified. We confirmed that the PM mass loads in the atmosphere and column concentrations continue to decrease whereas the number of media articles and internet searches with related key words increased over the same period. It was observed that the number of articles in the media increased by 10.5 times over the same period in which the PM mass in the atmosphere decreased by approximately 2.5%. The correlation analysis between the scientific observation data and social data showed significant correlation for the pairs of PM10 and aerosol optical thickness (AOT), meteorological visibility and relative humidity, and media publications with the number of internet portal searches. These results indicate that individual interest and anxiety about the air quality increased quantitatively as a result of these issues being mentioned in new media sources. These results demonstrate the reasons why atmospheric scientists should provide more information about current air quality to the public and exert their professionality in scientific and public discourse.
Collapse
Affiliation(s)
- Kwon-Ho Lee
- Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University, Gangneung, Republic of Korea.
| | - Min-Suk Bae
- Department of Environment Engineering, Mokpo National University, Mokpo, Republic of Korea.
| |
Collapse
|
7
|
Gen M, Zhou L, Zhang R, Chan CK. Concluding remarks: Faraday Discussion on air quality in megacities. Faraday Discuss 2021; 226:617-628. [PMID: 33650602 DOI: 10.1039/d0fd90037k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Megacities are metropolitan areas with populations over 10 million, and many of them are facing significant global environmental challenges such as air pollution. Intense economic and human activities in megacities result in air pollution emissions, inducing high levels of air pollutants in the atmosphere that harm human health, cause regional haze and acid deposition, damage crops, influence regional air quality, and contribute to climate change. Since the Great London Smog and the first recognized episode of Los Angeles photochemical smog seventy years ago, substantial progress has been achieved in improving the scientific understanding of air pollution and in developing emissions reduction technologies and control measures. However, much remains to be understood about the complex processes of atmospheric transport and reaction mechanisms; the formation and evolution of secondary particles, especially those containing organic species; and the influence of emerging emissions sources and changing climate on air quality and health. Molina (DOI: ) has provided an excellent overview of the sources of emissions in megacities, atmospheric physicochemical processes, air quality trends and management, and the impacts on health and climate for the introductory lecture of this Faraday Discussion.
Collapse
Affiliation(s)
- Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
8
|
Mason TG, Mary Schooling C, Ran J, Chan KP, Tian L. Does the AQHI reduce cardiovascular hospitalization in Hong Kong's elderly population? ENVIRONMENT INTERNATIONAL 2020; 135:105344. [PMID: 31801101 DOI: 10.1016/j.envint.2019.105344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Air quality alert programs have been introduced around the world to reduce the short term effects of air pollution on health. Hong Kong, a densely populated city in southern China with high levels of air pollution, introduced its first air quality health index (AQHI) on December 30th 2013. However, whether air quality alert program warnings, such as the AQHI, reduces morbidity is uncertain. Using a quasi-experimental design, we conducted the first evaluation of the AQHI in Hong Kong, focusing on cardiovascular morbidity in Hong Kong's elderly population. METHOD Interrupted time series with Poisson segmented regression from 2010 to 2016 was used to detect any sudden or gradual changes in emergency hospital admissions for cardiovascular diseases (CVD), after the AQHI policy was implemented. To account for potential confounders, models were adjusted for air pollutants (NO2, SO2, PM10, O3), temperature and humidity. The findings were validated using a negative control and three false policy periods. We also assessed effects on specific subtypes of CVD (hypertensive disease (HPD), acute myocardial infarction (AMI), heart failure, stroke and other CVD) and by sex. RESULTS From January 1st 2010 to December 31st, 2016, 375,672 hospital admissions for CVD occurred in Hong Kong's elderly population. Immediately after the policy HPD and AMI dropped by16% (relative risk (RR) 0.84, 95% confidence interval (CI): 0.78-0.91) and 15% (RR 0.85, 95% CI: (0.76-0.97)) respectively. There was no significant change for all CVD or other sub-types and no differences by sex. CONCLUSION Hong Kong's AQHI helped reduced hospital admissions in the elderly for HPD and AMI but had no effect on overall emergency hospitalization for CVD. To maximize health benefits of the policy, at risk groups need to be able to follow the behavioral changes recommended by the AQHI warnings.
Collapse
Affiliation(s)
- Tonya G Mason
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - JinJun Ran
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - King-Pan Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|