1
|
Zhu M, Lu X, Wang D, Ma J, Wang Y, Wang R, Wang H, Cheng W, Zhu Y. A narrative review of epigenetic marker in H3K27ac and its emerging potential as a therapeutic target in cancer. Epigenomics 2025; 17:263-279. [PMID: 39981972 PMCID: PMC11853624 DOI: 10.1080/17501911.2025.2460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science. Firstly, we provide an overview of the diverse landscape of histone modifications, emphasizing the distinctive characteristics and critical significance of H3K27ac. Secondly, we summarize and compare advanced high-throughput sequencing technologies that have been utilized in the construction of the H3K27ac epigenetic map. Thirdly, we elucidate the role of H3K27ac in mediating gene transcription. Fourthly, we venture into the potential molecular mechanism of H3K27ac in cancer development. Finally, we engage in discussing future therapeutic approaches in oncology, with a spotlight on strategies that harness the potential of H3K27 modifications. In conclusion, this review comprehensively summarizes the characteristics of H3K27ac and underscores its pivotal role in cancer, providing valuable insights into its potential as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Danhong Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hongye Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wenhui Cheng
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Madesh S, Gopi S, Sau A, Rajagopal R, Namasivayam SKR, Arockiaraj J. Chemical contaminants and environmental stressors induced teratogenic effect in aquatic ecosystem - A comprehensive review. Toxicol Rep 2024; 13:101819. [PMID: 39649382 PMCID: PMC11625353 DOI: 10.1016/j.toxrep.2024.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024] Open
Abstract
Aquatic environments, including marine and freshwater ecosystems, are vital for ecological balance and biodiversity. The rising global demand for aquaculture products necessitates increased production, with intensified aquaculture practices posing significant environmental risks. This review explores the pathways through which chemical pollutants, heavy metals, pharmaceuticals, and environmental stressors induce teratogenic effects in aquatic species. The review highlights the impact of pesticide include triazine herbicides, organophosphate and organochlorine insecticides, and carbamates on aquatic life, emphasizing their interference with endocrine systems and developmental processes. Heavy metals like mercury, lead, cadmium, arsenic, and chromium are noted for their persistence and bioaccumulative properties, disrupting cellular and hormonal functions. Pharmaceuticals, including NSAIDs, antibiotics, and chemotherapeutic agents, exert teratogenic effects by disrupting physiological and developmental pathways. Environmental stressors includes temperature fluctuations, salinity variations, pH changes, and oxygen level imbalances exacerbate the teratogenic impact of pollutants. This review highlights the importance of comprehensive environmental management and understanding these complex interactions is essential for formulating efficient strategies to safeguard the effective measures to protect aquatic ecosystems and the biodiversity.
Collapse
Affiliation(s)
- S. Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Sanjai Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Avra Sau
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - S. Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| |
Collapse
|
3
|
Meaza I, Williams AR, Lu H, Kouokam JC, Toyoda JH, Croom-Perez TJ, Wise SS, Aboueissa AEM, Wise JP. Prolonged particulate hexavalent chromium exposure induces RAD51 foci inhibition and cytoplasmic accumulation in immortalized and primary human lung bronchial epithelial cells. Toxicol Appl Pharmacol 2023; 479:116711. [PMID: 37805091 PMCID: PMC10841504 DOI: 10.1016/j.taap.2023.116711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4μg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL 32827, United States of America
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | | | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America.
| |
Collapse
|
4
|
Ma L, Hou T, Zhu K, Zhang A. Inhibition of Histone H3K18 Acetylation-Dependent Antioxidant Pathways Involved in Arsenic-Induced Liver Injury in Rats and the Protective Effect of Rosa roxburghii Tratt Juice. TOXICS 2023; 11:503. [PMID: 37368603 DOI: 10.3390/toxics11060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Arsenic is a common environmental toxicant. Long-term arsenic exposure can induce various types of liver injury, but the underlying mechanism remains unclear, so effective prevention and treatment measures are unknown. This study aims to explore the mechanism of arsenic-induced rat liver injury based on the histone H3K18 acetylation-dependent antioxidant pathway and to identify the role of a medicinal and edible resource, Rosa roxburghii Tratt juice, in combating it. Hepatic steatosis and inflammatory cell infiltration were observed in rats exposed to different doses of NaAsO2 using histopathological measurement. Increased 8-OHdG and MDA in liver tissue corroborated hepatic oxidative damage. We further found that a reduction in H3K18ac in the liver showed a dose-response relationship, with an increase in the NaAsO2 treatment dose, and it was remarkably associated with increased 8-OHdG and MDA. The results of ChIP-qPCR identified that the decreased enrichment of H3K18ac in promoters of the Hspa1a and Hspb8 genes culminated in the inhibition of the genes' expression, which was found to be involved in the aggravation of hepatic oxidative damage induced by arsenic. Notably, Rosa roxburghii Tratt juice was found to reduce 8-OHdG and MDA in the liver, thereby alleviating the histopathological lesions induced by arsenic, which was modulated by recovering the H3K18ac-dependent transcriptional activation of the Hspa1a and Hspb8 genes. Taken together, we provide a novel epigenetics insight into clarifying the mechanism of arsenic-induced liver injury and its rescue by Rosa roxburghii Tratt juice.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Teng Hou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
5
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
7
|
Wang Z, Yang C. Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:241-265. [PMID: 36858774 PMCID: PMC10565670 DOI: 10.1016/bs.apha.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hexavalent chromium [Cr(VI)], a Group I carcinogen classified by the International Agency for Research on Cancer (IARC), represents one of the most common occupational and environmental pollutants. The findings from human epidemiological and laboratory animal studies show that long-term exposure to Cr(VI) causes lung cancer and other cancer. Although Cr(VI) is a well-recognized carcinogen, the mechanism of Cr(VI) carcinogenesis has not been well understood. Due to the fact that Cr(VI) undergoes a series of metabolic reductions once entering cells to generate reactive Cr metabolites and reactive oxygen species (ROS) causing genotoxicity, Cr(VI) is generally considered as a genotoxic carcinogen. However, more and more studies have demonstrated that acute or chronic Cr(VI) exposure also causes epigenetic dysregulations including changing DNA methylation, histone posttranslational modifications and regulatory non-coding RNA (microRNA and long non-coding RNA) expressions. Moreover, emerging evidence shows that Cr(VI) exposure is also capable of altering cellular epitranscriptome. Given the increasingly recognized importance of epigenetic and epitranscriptomic dysregulations in cancer initiation and progression, it is believed that Cr(VI) exposure-caused epigenetic and epitranscriptomic changes could play important roles in Cr(VI) carcinogenesis. The goal of this chapter is to review the epigenetic and epitranscriptomic effects of Cr(VI) exposure and discuss their roles in Cr(VI) carcinogenesis. Better understanding the mechanism of Cr(VI) carcinogenesis may identify new molecular targets for more efficient prevention and treatment of cancer resulting from Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
8
|
Li T, Zheng Y, Li T, Guo M, Wu X, Liu R, Liu Q, You X, Zeng W, Lv Y. Potential dual protective effects of melatonin on spermatogonia against hexavalent chromium. Reprod Toxicol 2022; 111:92-105. [DOI: 10.1016/j.reprotox.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
|
9
|
Xia B, Yuan J, Pang L, He K. Chromium [Cr(VI)] Exposure Causes Cytotoxicity of Human Bronchial Epithelial Cells (16-HBE) and Proteomic Alterations. Int J Toxicol 2022; 41:225-233. [PMID: 35341331 DOI: 10.1177/10915818221078277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a common industrial pollutant, and exposure may cause toxic effects in multiple organ systems and carcinogenesis, including lung cancer. However, the toxic effect of Cr(VI) on the respiratory system is poorly understood. In the present study, it was demonstrated that Cr(VI) exposure significantly decreased the viability of human bronchial epithelial cells (16-HBE) in a dose-dependent manner. Flow cytometry demonstrated that Cr(VI) enhanced the transition of 16-HBE cells from G1 to S phase and arrested S-phase progression. Reverse transcription-quantitative polymerase chain reaction analysis revealed a significant alteration in the expression of apoptosis-associated genes in Cr(VI)-treated 16-HBE cells. In addition, using two-dimensional fluorescence differential gel electrophoresis with mass spectrometry, 15 differentially expressed proteins (1 upregulated and 14 downregulated) were identified in 16-HBE cells with Cr(VI) treatment compared with controls. Functional classification revealed that these differentially expressed proteins were involved in apoptosis, cytoskeletal structure, and energy metabolism. In conclusion, these data suggested that Cr(VI) caused toxic effects in bronchial epithelial cells and the mechanisms may involve the abnormal expression of apoptosis-associated proteins, cytoskeletal proteins, and energy metabolism-associated proteins.
Collapse
Affiliation(s)
- Bo Xia
- College of Food Science and Technology, 12575Hunan Agricultural University, East Renmin Road, Changsha, China.,Key Laboratory of Modern Toxicology of Shenzhen, 568734Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiao Yuan
- College of Food Science and Technology, 12575Hunan Agricultural University, East Renmin Road, Changsha, China
| | - Li Pang
- College of Horticulture, 12575Hunan Agricultural University, East Renmin Road, Changsha, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, 568734Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
10
|
Regulation of Cr(VI)-Induced Premature Senescence in L02 Hepatocytes by ROS-Ca2+-NF-κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7295224. [PMID: 35222804 PMCID: PMC8881123 DOI: 10.1155/2022/7295224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Stress-induced premature senescence may be involved in the pathogeneses of acute liver injury. Hexavalent chromium [Cr(VI)], a common environmental pollutant related to liver injury, likely leads to premature senescence in L02 hepatocytes. However, the underlying mechanisms regarding hepatocyte premature senility in Cr(VI) exposure remain poorly understood. In this study, we found that chronic exposure of L02 hepatocytes to Cr(VI) led to premature senescence characterized by increased β-galactosidase activity, senescence-associated heterochromatin foci, G1 phase arrest, and decreased cell proliferation. Additionally, Cr(VI)-induced senescent L02 hepatocytes showed upregulated inflammation-related factors, such as IL-6 and fibroblast growth factor 23 (FGF23), which also exhibited reactive oxygen species (ROS) accumulation derived from mitochondria accompanied with increased concentration of intracellular calcium ions (Ca2+) and activity of nuclear factor kappa B (NF-κB). Of note is that ROS inhibition by N-acetyl-Lcysteine pretreatment not only alleviated Cr(VI)-induced premature senescence but also reduced the elevated intracellular Ca2+, activated NF-κB, and secretion of IL-6/FGF23. Intriguingly, the toxic effect of Cr(VI) upon premature senescence of L02 hepatocytes and increased levels of IL-6/FGF23 could be partially reversed by the intracellular Ca2+ chelator BAPTA-AM pretreatment. Furthermore, by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC), we confirmed that NF-κB mediated IL-6/FGF23 to regulate the Cr(VI)-induced L02 hepatocyte premature senescence, whilst the concentration of intracellular Ca2+ was not influenced by PDTC. To the best of our knowledge, our data reports for the first time the role of ROS-Ca2+-NF-κB signaling pathway in Cr(VI)-induced premature senescence. Our results collectively shed light on further exploration of innovative intervention strategies and treatment targeting Cr(VI)-induced chronic liver damage related to premature senescence.
Collapse
|
11
|
Proctor DM, Bhat V, Suh M, Reichert H, Jiang X, Thompson CM. Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regul Toxicol Pharmacol 2021; 124:104969. [PMID: 34089813 DOI: 10.1016/j.yrtph.2021.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Hexavalent chromium [Cr(VI)] exists in the ambient air at low concentrations (average upperbound ~0.1 ng/m3) yet airborne concentrations typically exceed EPA's Regional Screening Level for residential exposure (0.012 ng/m3) and other similar benchmarks, which assume a mutagenic mode of action (MOA) and use low-dose linear risk assessment models. We reviewed Cr(VI) inhalation unit risk estimates developed by researchers and regulatory agencies for environmental and occupational exposures and the underlying epidemiologic data, updated a previously published MOA analysis, and conducted dose-response modeling of rodent carcinogenicity data to evaluate the need for alternative exposure-response data and risk assessment approaches. Current research supports the role of non-mutagenic key events in the MOA, with growing evidence for epigenetic modifiers. Animal data show a weak carcinogenic response, even at cytotoxic exposures, and highlight the uncertainties associated with the current epidemiological data used in risk assessment. Points of departure from occupational and animal studies were used to determine margins of exposure (MOEs). MOEs range from 1.5 E+3 to 3.3 E+6 with a median of 5 E+5, indicating that current environmental exposures to Cr(VI) in ambient air should be considered of low concern. In this comprehensive review, the divergent results from default linear and MOE assessments support the need for more relevant and robust epidemiologic data, additional mechanistic studies, and refined risk assessment strategies.
Collapse
Affiliation(s)
- Deborah M Proctor
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA.
| | | | - Mina Suh
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA
| | | | | | | |
Collapse
|
12
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
13
|
Chen Z, Zhong J, Ren X, Liu W, Wu D, Chen C, Huang H, Huang X, Liu Y, Liu J. Involvement of a novel regulatory cascade consisting of SET-H3K18ac/H3K27ac-53BP1 in Cr(VI)-induced malignant transformation of 16HBE cells. Toxicol Lett 2020; 339:70-77. [PMID: 33370592 DOI: 10.1016/j.toxlet.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Hexavalent chromium (Cr(VI)) is a well-established human carcinogen with DNA damaging effects. Recently we established a Cr(VI)-induced malignant transformation model from a human bronchial epithelial (16HBE) cell line, and in the transformed (16HBE-T) cells reduced levels of 53BP1 (critical for DNA repair) and the acetylated histone H3K18/27 (H3K18/27ac) were observed. In 16HBE-T cells SET (a multifunctional protein) was elevated by Cr(VI) through quantitative proteomics analysis. In the present study, we further explore the involvement of SET in the H3K18/27ac/53BP1 cascade in the 16HBE-T model, primarily by knockdown of SET. Bioinformatic analysis of the differentially expressed proteins indicated enrichment in histone modifications, in which SET was a major regulator. In 16HBE cells SET expression was enhanced by Cr(VI) in a concentration- and exposure duration-dependent manner. In 16HBE-T cells, SET knockdown showed the following effects: reversal of H3K18/27ac and 53BP1 levels, enhanced enrichment H3K18/27ac in 53BP1's promotor region, increase rate of apoptosis and cell cycle G0/G1 arrest (with or without Cr(VI) treatment), and reduced colony-forming efficiency. Finally, In comparison with benzo(a)pyrene-transformed (malignant, 16HBE-B) cells from 16HBE where no changes in H3K18/27ac, 53BP1 or SET were observed, while the H3K18/27ac/53BP1 cascade was downregulated and SET upregulated in 16HBE-T cells, as compared with the parental 16HBE cells; thus the changes in 16HBE-T might be a specific effect of Cr(VI). In conclusion, our results suggest that SET may be involved in the malignant cell transformation, through inhibiting the H3K18/27ac/53BP1 cascade, at least in the 16HBE cell model.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Jiacheng Zhong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Wei Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Chongyang Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianjun Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 518055.
| |
Collapse
|
14
|
Tatehana M, Kimura R, Mochizuki K, Inada H, Osumi N. Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice. PLoS One 2020; 15:e0230930. [PMID: 32267870 PMCID: PMC7141650 DOI: 10.1371/journal.pone.0230930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epigenetic alterations in sperm that can influence developmental programs in offspring. In this study, we qualitatively and semiquantitatively evaluated histone modification patterns in male germline cells throughout spermatogenesis based on immunostaining of testes taken from young (3 months old) and aged (12 months old) mice. Although localization patterns were not obviously changed between young and aged testes, some histone modification showed differences in their intensity. Among histone modifications that repress gene expression, histone H3 lysine 9 trimethylation (H3K9me3) was decreased in the male germline cells of the aged testis, while H3K27me2/3 was increased. The intensity of H3K27 acetylation (ac), an active mark, was lower/higher depending on the stages in the aged testis. Interestingly, H3K27ac was detected on the putative sex chromosomes of round spermatids, while other chromosomes were occupied by a repressive mark, H3K27me3. Among other histone modifications that activate gene expression, H3K4me2 was drastically decreased in the male germline cells of the aged testis. In contrast, H3K79me3 was increased in M-phase spermatocytes, where it accumulates on the sex chromosomes. Therefore, aging induced alterations in the amount of histone modifications and in the differences of patterns for each modification. Moreover, histone modifications on the sex chromosomes and on other chromosomes seems to be differentially regulated by aging. These findings will help elucidate the epigenetic mechanisms underlying the influence of paternal aging on offspring development.
Collapse
Affiliation(s)
- Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Kentaro Mochizuki
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
15
|
Zhang AL, Chen L, Ma L, Ding XJ, Tang SF, Zhang AH, Li J. Role of H3K18ac-regulated nucleotide excision repair-related genes in arsenic-induced DNA damage and repair of HaCaT cells. Hum Exp Toxicol 2020; 39:1168-1177. [PMID: 32031413 DOI: 10.1177/0960327120903482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Arsenic is an environmental poison and is a grade I human carcinogen that can cause many types of damage to the body. The skin is one of the main target organs of arsenic damage, but the molecular mechanisms underlying arsenic poisoning are not clear. Arsenic is an epigenetic agent. Histone acetylation is one of the earliest covalent modifications to be discovered and is closely related to the occurrence and development of tumors. To investigate the role of acetylated histone H3K18 (H3K18 ac) in arsenic-induced DNA damage, HaCaT cells were exposed to sodium arsenite (NaAsO2) for 24 h. It was found that arsenic induced the downregulation of xeroderma pigmentosum A, D, and F (XPA, XPD, and XPF-nucleotide excision repair (NER)-related genes) expression, as well as histone H3K18 ac expression, and aggravated DNA damage. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis showed that H3K18 acetylation in the promoter regions of XPA, XPD, and XPF was downregulated. In addition, the use of the histone deacetylase inhibitor trichostatin A (TSA) partially inhibited arsenic-induced DNA damage, inhibited deacetylation of H3K18 ac in the promoter regions of XPA, XPD, and XPF genes, increased acetylation of H3K18, and promoted the transcriptional expression of NER-related genes. Our study revealed that NaAsO2 induces DNA damage and inhibits the expression of NER-related genes, while TSA increases the H3K18 ac enrichment level and promotes the transcriptional expression of NER, thereby inhibiting DNA damage. These findings provide new ideas for understanding the molecular mechanisms underlying arsenic-induced skin damage.
Collapse
Affiliation(s)
- A L Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - L Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - L Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - X J Ding
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - S F Tang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - A H Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - J Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|