1
|
Sharghi EA, Ghasemian P, Davarpanah L, Faridizad G. Investigation of a membrane bioreactor's performances in treating sunflower oil refinery wastewater containing high oleic acid at different SRTs. Bioprocess Biosyst Eng 2023; 46:1613-1625. [PMID: 37656256 DOI: 10.1007/s00449-023-02923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the MBR performance, sludge morphology, and membrane fouling potential in treating sunflower oil refinery wastewater containing high oleic acid at three different SRTs of 10 days, 40 days, and infinite. The analysis of mixed liquor morphology including sludge volume index, PSD, EPS, and SMP showed that the sludge flocs compressibility and bioflocculation considerably improved at 40-days SRT. Additionally, at this SRT, the mixed liquor O&G, COD, and SMP accumulation were low, and the microbial activity and COD removal were enhanced. The gas chromatography/mass spectrometry analysis results confirmed the formation of three different new compounds related to non-readily biodegradable recalcitrant oily compounds and SMP at all SRTs. The analysis of mixed liquor EPS, PSD, SMP, and effluent COD at three different SRTs suggests that under the industrial conditions of MBR operation treating SORW with high oleic acid, the optimal operating conditions are predicted to be at 40-days SRT.
Collapse
Affiliation(s)
- E Abdollahzadeh Sharghi
- Environmental Group, Department of Energy, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Alborz, Iran.
| | - P Ghasemian
- Environmental Group, Department of Energy, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Alborz, Iran
| | - L Davarpanah
- Environmental Group, Department of Energy, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Alborz, Iran
| | - G Faridizad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Huang J, Wang C, Zhang S, Han X, Feng R, Li Y, Huang X, Wang J. Optimizing nitrogenous organic wastewater treatment through integration of organic capture, anaerobic digestion, and anammox technologies: sustainability and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27410-6. [PMID: 37261686 DOI: 10.1007/s11356-023-27410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
With China's recent commitment to reducing carbon emissions and achieving carbon neutrality, anaerobic digestion and anaerobic ammonium oxidation (anammox) have emerged as promising technologies for treating nitrogenous organic wastewater. Anaerobic digestion can convert organic matter into volatile fatty acids (VFAs), methane, and other chemicals, while anammox can efficiently remove nitrogen with minimal energy consumption. This study evaluates the principles and characteristics of enhanced chemical flocculation and bioflocculation, as well as membrane separation, for capturing organic matter. Additionally, the paper evaluates the production of acids and methane from anaerobic digestion, exploring the influence of various factors and the need for control strategies. The features, challenges, and concerns of partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) are also outlined. Finally, an integrated system that combined organic capture, anaerobic digestion, and anammox is proposed as a sustainable and effective solution for treating nitrogenous organic wastewater and recovering energy and resources.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
3
|
Rocco MJ, Hafuka A, Tsuchiya T, Kimura K. Efficient Recovery of Organic Matter from Municipal Wastewater by a High-Rate Membrane Bioreactor Equipped with Flat-Sheet Ceramic Membranes. MEMBRANES 2023; 13:300. [PMID: 36984687 PMCID: PMC10056867 DOI: 10.3390/membranes13030300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
High-rate processes have been investigated for the recovery of organic matter from municipal wastewater. High-rate membrane bioreactors (HR-MBRs) may simultaneously achieve the increased recovery of carbon and high effluent quality, although control of membrane fouling is extremely difficult. To address the severe fouling in HR-MBRs, the combination of granular scouring and frequent chemically enhanced backwashing was examined. The use of robust flat-sheet ceramic membranes enabled the application of those cleaning strategies. Experiments were carried out at an existing wastewater treatment plant. To operate as a high-rate system, the bioreactor solid residence time and hydraulic residence time were set at 0.5 days and 1.6 h, respectively. Although a relatively high flux of 20 L m-2 h-1 was applied, the proposed HR-MBR exhibited a very low fouling rate of 1.3 kPa/day. The system could recover >70% of the carbon from raw wastewater, whereas the concentration of chemical oxygen demand in the effluent was lowered to <20 mg/L. The performance of the proposed HR-MBR observed in this study was clearly superior to those reported in previous related studies.
Collapse
Affiliation(s)
- Michael Joseph Rocco
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Akira Hafuka
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Toru Tsuchiya
- MEIDENSHA CORPORATION, ThinkPark Tower, 2-1-1 Osaki, Shinagawa-ku, Tokyo 141-6029, Japan
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
4
|
Chemically enhanced high-loaded membrane bioreactor (CE-HLMBR) for A-stage municipal wastewater treatment: Pilot-scale experiments and practical feasibility evaluation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Taheri M, Fallah N, Nasernejad B. Comparison of high-concentration azo dye removal by long HRT in MSBRs' bioaugmented with GAC and sponge media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1201-1215. [PMID: 35915305 DOI: 10.1007/s11356-022-22055-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The present study assessed the performance and fouling of adding granular activated carbon (GAC) and sponge (BioCube), as two different media, to a membrane sequencing batch reactor (MSBR) system in wastewater treatment containing Acid Red 18 (AR 18). Anaerobic phase, aerobic phase, and hydraulic retention times (HRTs) of 24 h, 12 h, and 72 h were considered for 500 mg/L AR 18 removal at a sludge retention time (SRT) of 20 days by separately adding up to 35% BioCube volume and 8 g/L GAC to the reactors. Based on the kinetic study, 63 mg/L (87% removal) and 115 mg/L (77% removal) remaining dye were reported in the GAC and BioCube membrane sequencing batch reactors (GAC-MSBR and BioCube-MSBR), respectively. A gradual oxidation-reduction potential decline toward -416 mV confirmed better dye removal in GAC-MSBR than BioCube-MSBR, observing a sudden drop to -354 mV. The morphology can explain better biological treatment in GAC-MSBR in addition to the adsorption process. Soluble microbial products (SMPs) of 126.92 mg/L and 395.18 mg/L were obtained for GAC-MSBR and BioCube-MSBR, respectively. Chemical oxygen demand (COD) and SMP indicated that the GAC-MSBR water quality is better than that of the other reactor.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran
| | - Narges Fallah
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran.
| | - Bahram Nasernejad
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran, 15875-4413, Iran
| |
Collapse
|
6
|
Zhang M, Leung KT, Lin H, Liao B. Evaluation of membrane fouling in a microalgal-bacterial membrane photobioreactor: Effects of SRT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156414. [PMID: 35660432 DOI: 10.1016/j.scitotenv.2022.156414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
As a novel system, the microalgal-bacterial membrane photobioreactor (MPBR) has better performance than the conventional MBRs in membrane fouling control. Nevertheless, how the operating conditions affect its fouling performance is rarely reported. In this study, a microalgal-bacterial MPBR was set and continuously operated to treat synthetic wastewater. Effects of solids retention time (SRT, 10, 20, and 30 d) on the membrane fouling were investigated. The results showed that the relationship between membrane fouling and SRT was nonlinear and the fastest membrane fouling was observed at SRT 20 d. The predominant fouling mechanism was gel layer formation. X-ray photoelectron spectroscopy results showed a significant difference in the surface composition of the microalgal-bacterial consortia at different SRTs. The biological flocs at SRT of 20 d had the largest floc size, moderate filament abundance, and the highest content of bound EPS and SMP. The highest membrane fouling at SRT 20 d was mainly attributed to the highest concentration of EPS and SMP. Environmental stresses and fierce competition between microalgae and bacteria are considered to be the underlying reasons for the elevated production of EPS and SMP. In brief, optimizing the SRT value to control the balanced growth of microalgae and bacteria and keep them at an appropriate ratio is critical for delaying membrane fouling in microalgal-bacterial MPBR.
Collapse
Affiliation(s)
- Meijia Zhang
- Biotechnoloy Research Program, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Kam-Tin Leung
- Biotechnoloy Research Program, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Baoqiang Liao
- Biotechnoloy Research Program, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
7
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B, Khoshnevisan B. Integrating electrocoagulation process with up-flow anaerobic sludge blanket for in-situ biomethanation and performance improvement. BIORESOURCE TECHNOLOGY 2022; 360:127536. [PMID: 35772719 DOI: 10.1016/j.biortech.2022.127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, the integration of the electrocoagulation (EC) process with anaerobic digestion as a novel in-situ biomethanation approach was considered for the first time. As a result of this integration (iron electrodes, current density of 1.5 mA/cm2 and an exposure mode of 10-min-ON/ 30-min-OFF), the carbon dioxide content of biogas reached below 2%. Also, the methane production rate improved by 18.0 ± 0.4%, whereas the removal efficiencies of chemical oxygen demand, turbidity, phosphate, and sulfate increased by 12.0 ± 1.5%, 30.7 ± 1.7%, > 99%, and 75.7%, respectively. Anaerobic granular sludge characteristics were also improved. Moreover, the EC process stimulated growth and quantity of functional microorganisms, especially Acinetobacter in bacterial and Methanobacterium in archaeal community. Methane concentration, however decreased due to possible excess hydrogen production. The application of the biogas as bio-hythane, and the optimization of the hybrid bioreactor to decrease hydrogen production, are possible avenues for further research.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Benyamin Khoshnevisan
- Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioflocculation has become the method of choice in wastewater treatment because of its effectiveness, environmental friendliness and innocuousness to humans. In this study, the bioflocculant-producing bacterium was isolated and its bioflocculant was used in wastewater treatment. The isolate was identified by 16S rRNA gene sequencing analysis. Its culture conditions (inoculum size, carbon and nitrogen sources, pH, temperature and time) were optimised using the one-factor-at-a-time assay. The cytotoxicity of the bioflocculant was assessed on human colorectal adenocarcinoma cells (Caco2) by tetrazolium-based colorimetric method. The ability of the bioflocculant to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in wastewater was evaluated using Jar test. The bacterium was identified as Bacillus subtilis CSM5 and the maximum flocculating activity of 92% was observed when fructose and urea were used as nutrients and the culture conditions were adjusted to 30 °C, pH 9, 160 rpm and 72 h of incubation. Caco2 exhibited 90% viability when the highest bioflocculant concentration of 200 µg/µL was used. The reduction of BOD and COD was achieved at 59 ± 3.1 and 75 ± 0.4%, respectively. In conclusion, B. subtilis CSM5 is a good candidate for bioflocculant production and its bioflocculant has good potential for use in wastewater treatment.
Collapse
|
9
|
Elyasi S, Fallah N, Bonakdarpour B, Mahboubi A, Taherzadeh MJ. The effect of temperature and styrene concentration on biogas production and degradation characteristics during anaerobic removal of styrene from wastewater. BIORESOURCE TECHNOLOGY 2021; 342:125988. [PMID: 34600318 DOI: 10.1016/j.biortech.2021.125988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In the current study, styrene was removed anaerobically from wastewaters at temperatures of 35 ℃, 25 ℃, and 15 ℃ and concentration range of 20-150 ppm in the presence of ethanol as a co-substrate and co-solvent. Maximum styrene removal of 93% was achieved at 35 ℃. The volatilization of styrene was negligible at about 2% at all experimented temperatures. The average special methane yield (SMY) at 35 ℃ was 4.14- and 225-times higher than that of at T = 25 ℃ and T = 15 ℃, respectively, but no methane was produced in the absence of ethanol. The proteins content of the soluble microbial product (SMP) and extracellular polymeric substance (EPS) was much higher than the carbohydrate content. At styrene concentration > 80 ppm, SMY, SMP, and EPS dropped sharply. The results confirmed the well performance of anaerobic microorganisms in removing styrene from wastewater and biogas production at mesophilic condition.
Collapse
Affiliation(s)
- Shilan Elyasi
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, Sweden
| | | |
Collapse
|
10
|
He C, Wang K, Fang K, Gong H, Jin Z, He Q, Wang Q. Up-concentration processes of organics for municipal wastewater treatment: New trends in separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147690. [PMID: 34004540 DOI: 10.1016/j.scitotenv.2021.147690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Carbon neutrality is a pressing goal for the whole society. Over 20% of municipality electrical energy on public utilities was consumed by the operation of wastewater treatment plants (WWTPs). Up-concentration of organic matters and maximum energy recovery is essential for a more sophisticated municipal wastewater management. Chemical coagulation and biological adsorption have been used to achieve efficient carbon capture, while separation is an overlooked step. It may lead to poor effluent quality, as well as consume most of the time and volume. The introduction of new driving forces, such as pressure and magnetism, significantly improved the retention rate and speed, respectively. In this paper, recent works were comprehensively reviewed and a horizontal comparison was conducted from aspects of separation speed, retention rate, concentrate characteristics and economic costs. This review also discussed the selection of technologies under different conditions. Finally, the practical application, fouling mitigation with considering the value of the concentrate, identification of unique concentrate characteristics, and the establishment of an evaluation system was suggested as core issues for future researches. This review will promote the development of an energy-efficient wastewater treatment system with up-concentration processes.
Collapse
Affiliation(s)
- Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kuo Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhengyu Jin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiuhang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
11
|
Chen C, Ali A, Su J, Gao J. An Efficient Bioaggregate Reactor for Enhanced Denitrification of Sewage with Low Carbon/Nitrogen Ratio. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changlun Chen
- Xi'an University of Architecture and Technology School of Environmental and Municipal Engineering 710055 Xi'an China
- Xi'an University of Architecture and Technology Shaanxi Key Laboratory of Environmental Engineering 710055 Xi'an China
| | - Amjad Ali
- Xi'an University of Architecture and Technology School of Environmental and Municipal Engineering 710055 Xi'an China
- Xi'an University of Architecture and Technology Shaanxi Key Laboratory of Environmental Engineering 710055 Xi'an China
| | - Junfeng Su
- Xi'an University of Architecture and Technology School of Environmental and Municipal Engineering 710055 Xi'an China
- Xi'an University of Architecture and Technology Shaanxi Key Laboratory of Environmental Engineering 710055 Xi'an China
- Xi'an University of Architecture and Technology State Key Laboratory of Green Building in West China 710055 Xi'an China
| | - Jing Gao
- Xi'an University of Architecture and Technology School of Environmental and Municipal Engineering 710055 Xi'an China
- Xi'an University of Architecture and Technology Shaanxi Key Laboratory of Environmental Engineering 710055 Xi'an China
| |
Collapse
|
12
|
Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW. Water pathways through the ages: Integrated laundry wastewater treatment for pollution prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143966. [PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
Collapse
Affiliation(s)
- Kah Chun Ho
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, SEGi University, Kota Damansara, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Jing Yao Sum
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia
| | - Zhe Jia Ng
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Wang D, Zuo Y, Liu N, Yu J, Qiu C. Stability of pure oxygen aeration-activated sludge system under non-steady food-to-microorganism ratio conditions during petrochemical wastewater treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:21-31. [PMID: 33054534 DOI: 10.1080/10934529.2020.1833599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/26/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the stability of a pure oxygen aeration-activated sludge system for petrochemical wastewater treatment under high organic concentration and non-steady food-to-microorganism (F/M) ratio conditions. Sludge settling characteristics maintained relatively stable conditions with an F/M ratio variation from 0.15 ± 0.04 to 0.33 ± 0.07 kg COD/kg MLSS⋅d, while the excess F/M ratio (0.44 ± 0.16 kg COD/kg MLSS⋅d) resulted in deterioration of the organic removal and sludge-water separation performances. Loosely bound extracellular polymeric substances (EPS) showed more significant effect on sludge settleability than the tightly bound EPS. The genus Hydrogenophaga was related to organic removal performance, while Zoogloea and Chitinophaga were related to the effluent quality of suspended solids. The excess F/M ratio also caused an increase in Zoogloea and Chitinophaga, whereas the toxicity of petrochemical wastewater resulted in decreased abundance of Hydrogenophaga. These changes caused deterioration of the organic removal and sludge-water separation performances.
Collapse
Affiliation(s)
- Dong Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Yuanyuan Zuo
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Nannan Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Jingjie Yu
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Chunsheng Qiu
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| |
Collapse
|
14
|
Zhou L, Zhang W, De Costa YG, Zhuang WQ, Yi S. Assessing inorganic components of cake layer in A/O membrane bioreactor for physical-chemical treated tannery effluent. CHEMOSPHERE 2020; 250:126220. [PMID: 32120146 DOI: 10.1016/j.chemosphere.2020.126220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, an anoxic-oxic membrane bioreactor (A/O-MBR), was used to treat effluent tannery wastewater pretreated by physicochemical processes. The A/O-MBR performed well during the experimental period and was able to produce a high-quality effluent containing 90 ± 10 mg-CODcr/L and 0.5 ± 0.1 mg-NH4+-N/L. However, it was observed that at rates of approximately 1.02 kPa/day and 1.2 μm/day, both transmembrane pressure (TMP) and thickness of cake layer increased during wastewater treatment. The eventual thickness of the cake layer was between 47.8 and 51.5 μm. Furthermore, an Inductively Coupled Plasma-Optical Emission Spectrometer, used to analyze inorganic components of the cake layer, revealed that four inorganic elements, Cr, Ca, Mg and Al were predominant (weight percentage rate 4:13:10:72). Due to low solubility (Cr(OH)3: Ksp 6.3 × 10-31; Al(OH)3: Ksp 6.3 × 10-19), the elements of Cr and Al mainly existed in the forms of Cr(OH)3 and Al(OH)3, respectively. Other minerals in the cake layer included Al2O3, CaCO3, and MgCO3. Additionally, using an SEM-EDX (Scanning electron microscopy-energy dispersive X-ray analyzer), we discovered that inorganic particles that formed within the activated sludge of the A/O-MBR steadily accumulating on the membrane surface, resulted in an evenly distributed inorganic layer which could be observed along the cross-sections of the cake layer.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yashika G De Costa
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|