1
|
Guo Y, Chen C, Lin C, Zhu L, Liu H. High‐performance quaternized hollow fiber membrane with sponge pore structure for fast adsorbing dichloroacetic acid from water by flow‐through adsorption. J Appl Polym Sci 2023. [DOI: 10.1002/app.53638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yao‐Shen Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering Zhejiang University Hangzhou China
- Ningbo Fotile Kitchen Ware Company Ningbo China
- Key Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province Ningbo China
| | - Cheng Chen
- Ningbo Fotile Kitchen Ware Company Ningbo China
| | - Chun‐Er Lin
- Ningbo Fotile Kitchen Ware Company Ningbo China
- Key Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province Ningbo China
| | - Li‐Ping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering Zhejiang University Hangzhou China
| | - Hong‐Xing Liu
- Ningbo Fotile Kitchen Ware Company Ningbo China
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province Ningbo China
| |
Collapse
|
2
|
Miao M, Liu J, Dou Y, Hao H, Cheng X, Zhang M, Li Y. Effects of microplastics on DBPs formation under the chlorination of natural organic matters. CHEMOSPHERE 2022; 296:134067. [PMID: 35216978 DOI: 10.1016/j.chemosphere.2022.134067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Microplastics have attracted extensive attention and concern because they inflict damage on human beings and the environment. When the microplastics enter the water system, they inevitably flow into the water treatment system and encounter disinfectants during the disinfection procedure. Chlorine can react with microplastics to form different kinds of disinfection byproducts (DBPs). O-containing functional groups on the surface of microplastics may play a major role in DBP formation. Without O-containing functional groups, microplastics can also form DBPs but with totally different mechanisms. Reactive oxygen species (ROS, i.e., •OH) and reactive chlorine substances (RCS, i.e., Cl• and ClO•) may attack the microplastics and form DBP precursors. With relatively low surface area and very little pore volume, microplastics cannot affect the DBP formation between Suwannee River fulvic acid (SRFA) and chlorine. When SRFA exists, microplastics with few O-containing functional groups can hardly form DBPs because of the inhibition of ROS and RCS.
Collapse
Affiliation(s)
- Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Jinfeng Liu
- Tianjin International Engineering Consulting Group Co.,Ltd, Dongting Road 20, Hexi District, Tianjin, China
| | - Yuanyuan Dou
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Huizhi Hao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
3
|
Yu Y, Huang X, Chen R, Pan L, Shi B. Control of disinfection byproducts in drinking water treatment plants: Insight into activated carbon filter. CHEMOSPHERE 2021; 280:130958. [PMID: 34162113 DOI: 10.1016/j.chemosphere.2021.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/27/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
The removal efficiencies of disinfection byproducts formation potentials (DBPFPs) and generated DBPs under pre-chlorination condition (pre-generated DBPs) during different drinking water treatment trains in eight full-scale drinking water treatment plants (WTPs) were investigated through field and laboratory studies. Haloacetic acids (HAAs) and haloacetonitriles (HANs) were identified to be two representative DBPs based on cytotoxicity and genotoxicity assessments. The performances of advanced treatment train for HAAs and HANs were better than that of conventional treatment train. However, the efficacy of ozone - biological activated carbon (O3-BAC) was affected by its service time and position in the water treatment process. In addition, the consumption of free chlorine by activated carbon in old granular activated carbon (GAC) filter was higher than that in new one under pre-chlorination condition, resulting in the increase of HAAs and HANs in the GAC filter effluent. This demonstrated that the organic matter adsorbed on older activated carbon generated more HAAs and HANs during pre-chlorination, which inhibited the adsorption of pre-generated DBPs. The ability of GAC/O3-BAC to remove HAAs and HANs was consistent with that of protein-like and low molecular weight organic substances, which could predict the performance of GAC and O3-BAC in treating DBPs.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Synthesis and characterization of novel organic–inorganic hybrid nanocomposites of phosphate–benzimidazole by soft chemistry route in aqueous media. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1482-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|