1
|
Xu WL, Wang YJ, Wang YT, Li JG, Zeng YN, Guo HW, Liu H, Dong KL, Zhang LY. Application and innovation of artificial intelligence models in wastewater treatment. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104426. [PMID: 39270601 DOI: 10.1016/j.jconhyd.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.
Collapse
Affiliation(s)
- Wen-Long Xu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Ya-Jun Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Yi-Tong Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China.
| | - Jun-Guo Li
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Ya-Nan Zeng
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Hua-Wei Guo
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Huan Liu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Kai-Li Dong
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Liang-Yi Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| |
Collapse
|
2
|
Farissi S, Abubakar GA, Akhilghosh KA, Muthukumar A, Muthuchamy M. Sustainable application of electrocatalytic and photo-electrocatalytic oxidation systems for water and wastewater treatment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1447. [PMID: 37945768 DOI: 10.1007/s10661-023-12083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Wastewater treatment and reuse have risen as a solution to the water crisis plaguing the world. Global warming-induced climate change, population explosion and fast depletion of groundwater resources are going to exacerbate the present global water problems for the forthcoming future. In this scenario, advanced electrochemical oxidation process (EAOP) utilising electrocatalytic (EC) and photoelectrocatalytic (PEC) technologies have caught hold of the interest of the scientific community. The interest stems from the global water management plans to scale down centralised water and wastewater treatment systems to decentralised and semicentralised treatment systems for better usage efficiency and less resource wastage. In an age of rising water pollution caused by contaminants of emerging concern (CECs), EC and PEC systems were found to be capable of optimal mineralisation of these pollutants rendering them environmentally benign. The present review treads into the conventional electrochemical treatment systems to identify their drawbacks and analyses the scope of the EC and PEC to mitigate them. Probable electrode materials, potential catalysts and optimal operational conditions for such applications were also examined. The review also discusses the possible retrospective application of EC and PEC as point-of-use and point-of-entry treatment systems during the transition from conventional centralised systems to decentralised and semi-centralised water and wastewater treatment systems.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Gado Abubakar Abubakar
- Department of Physics, Kebbi State University of Science and Technology, Aleiro, Kebbi State, Nigeria
| | | | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India.
| |
Collapse
|
3
|
AlJaberi FY, Ahmed SA, Makki HF, Naje AS, Zwain HM, Salman AD, Juzsakova T, Viktor S, Van B, Le PC, La DD, Chang SW, Um MJ, Ngo HH, Nguyen DD. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161361. [PMID: 36610626 DOI: 10.1016/j.scitotenv.2022.161361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study examined >140 relevant publications from the last few years (2018-2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending on the in-situ conditions, as evidenced by surveyed articles and statistical analyses. This work also examines the variables affecting the elimination efficacy, such as the applied current, reaction time, pH, type of electrolyte, initial pollutant concentration, and energy consumption. In addition, owing to its efficacy in removing toxins, the hybrid activity showed a good percentage among the studies reviewed. The promise of each wastewater treatment technology depends on the type of contamination. In some cases, EO requires additives to oxidise the pollutants. EF and EFN eliminated lightweight organic pollutants. ED has been used to treat saline water. Compared to other methods, EC has been extensively employed to remove a wide variety of contaminants.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq.
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Hasan F Makki
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ahmed Samir Naje
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Haider M Zwain
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - Sebestyen Viktor
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - B Van
- Institute of Research and Development, Duy Tan University, 550000 Danang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, 550000 Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Viet Nam.
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Viet Nam
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
4
|
Ranga M, Sinha S. Mechanism and Techno‐Economic Analysis of the Electrochemical Process. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Monica Ranga
- Indian Institute of Technology Roorkee Department of Chemical Engineering 247667 Roorkee, Uttarakhand India
| | - Shishir Sinha
- Indian Institute of Technology Roorkee Department of Chemical Engineering 247667 Roorkee, Uttarakhand India
| |
Collapse
|
5
|
AlJaberi FY, Alardhi SM, Ahmed SA, Salman AD, Juzsakova T, Cretescu I, Le PC, Chung WJ, Chang SW, Nguyen DD. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency? ENVIRONMENTAL RESEARCH 2022; 214:113890. [PMID: 35870500 DOI: 10.1016/j.envres.2022.113890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical technologies or conventional methods for effective removal of different pollutants with less cost and sometimes over shorter durations of operation. It has also been observed that the hybrid effects besides increasing the removal efficiency can overcome the disadvantages of using electrocoagulation alone, such as less sludge formation, high cost of operation and increased life of the used electrodes, and stable flux of water with longer periods of operation. More than 20 types of other technologies have been combined efficiently with electrocoagulation.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Baghdad, Iraq
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Igor Cretescu
- Department of Environmental Engineering and Management, Gheorghe Asachi Technical University of Iasi, Romania
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Vietnam.
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Vietnam.
| |
Collapse
|
6
|
Cheng N, Huang J, Wang Y. Establishment of electrochemical treatment method to dye wastewater and its application to real samples. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is of great significance to study the treatment of organic dye pollution. In this work, a method of electrochemical treatment for reactive blue 19 dye (RB19) wastewater system was established, and it was applied to the actual dye wastewater treatment. The effects of applied voltage, electrolyte concentration, electrode spacing, and initial concentration on the removal effect of RB19 have been studied in detail. The results show that the removal rate of RB19 can reach 82.6% and the chemical oxygen demand (CODcr) removal rate is 54.3% under optimal conditions. The removal of RB19 in the system is mainly the oxidation of hydroxyl free radicals. The possible degradation pathway is inferred by ion chromatography: hydroxyl free radicals attack the chromophoric group of RB19 to make it fall off, and then decompose it into ring-opening. The product is finally oxidized to CO2 and water. The kinetic fitting is in accordance with the zero-order reaction kinetics. At the same time, using the established electrochemical system to treat the actual dye wastewater has also achieved good results. After 3 hours of treatment, the CODcr removal rate of the raw water is 44.8%, and the CODcr removal of the effluent can reach 89.5%. The degradation process conforms to the zero-order reaction kinetics. The result is consistent with the electrochemical treatment of RB19.
Collapse
Affiliation(s)
- Nian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Jingyi Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Yingru Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Asgari G, Seid-Mohammadi A, Samargandi MR, Jamshidi R. Mineralization, kinetics, and degradation pathway of pentachlorophenol degradation from aqueous media via persulfate/dithionite process. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|