1
|
Zeng J, Xu S, Lin K, Yao S, Yang B, Peng Z, Hao T, Yu X, Zhu T, Jiang F, Sun J. Long-term stable and efficient degradation of ornidazole with minimized by-product formation by a biological sulfidogenic process based on elemental sulfur. WATER RESEARCH 2024; 249:120940. [PMID: 38071904 DOI: 10.1016/j.watres.2023.120940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Conventional biological treatment processes cannot efficiently and completely degrade nitroimidazole antibiotics, due to the formation of highly antibacterial and carcinogenic nitroreduction by-products. This study investigated the removal of a typical nitroimidazole antibiotic (ornidazole) during wastewater treatment by a biological sulfidogenic process based on elemental sulfur (S0-BSP). Efficient and stable ornidazole degradation and organic carbon mineralization were simultaneously achieved by the S0-BSP in a 798-day bench-scale trial. Over 99.8 % of ornidazole (200‒500 μg/L) was removed with the removal rates of up to 0.59 g/(m3·d). Meanwhile, the efficiencies of organic carbon mineralization and sulfide production were hardly impacted by the dosed ornidazole, and their rates were maintained at 0.15 kg C/(m3·d) and 0.49 kg S/(m3·d), respectively. The genera associated with ornidazole degradation were identified (e.g., Sedimentibacter, Trichococcus, and Longilinea), and their abundances increased significantly. Microbial degradation of ornidazole proceeded by several functional genes, such as dehalogenases, cysteine synthase, and dioxygenases, mainly through dechlorination, denitration, N-heterocyclic ring cleavage, and oxidation. More importantly, the nucleophilic substitution of nitro group mediated by in-situ formed reducing sulfur species (e.g., sulfide, polysulfides, and cysteine hydropolysulfides), instead of nitroreduction, enhanced the complete ornidazole degradation and minimized the formation of carcinogenic and antibacterial nitroreduction by-products. The findings suggest that S0-BSP can be a promising approach to treat wastewater containing multiple contaminants, such as emerging organic pollutants, organic carbon, nitrate, and heavy metals.
Collapse
Affiliation(s)
- Jiajia Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Shuqun Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Si Yao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhanhui Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Xiaoyu Yu
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Łubkowska B, Sobolewski I, Adamowicz K, Zylicz-Stachula A, Skowron PM. Recombinant TP-84 Bacteriophage Glycosylase-Depolymerase Confers Activity against Thermostable Geobacillus stearothermophilus via Capsule Degradation. Int J Mol Sci 2024; 25:722. [PMID: 38255796 PMCID: PMC10815759 DOI: 10.3390/ijms25020722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The TP-84 bacteriophage, which infects Geobacillus stearothermophilus strain 10 (G. stearothermophilus), has a genome size of 47.7 kilobase pairs (kbps) and contains 81 predicted protein-coding ORFs. One of these, TP84_26 encodes a putative tail fiber protein possessing capsule depolymerase activity. In this study, we cloned the TP84_26 gene into a high-expression Escherichia coli (E. coli) system, modified its N-terminus with His-tag, expressed both the wild type gene and His-tagged variant, purified the recombinant depolymerase variants, and further evaluated their properties. We developed a direct enzymatic assay for the depolymerase activity toward G. stearothermophilus capsules. The recombinant TP84_26 protein variants effectively degraded the existing bacterial capsules and inhibited the formation of new ones. Our results provide insights into the novel TP84_26 depolymerase with specific activity against thermostable G. stearothermophilus and its role in the TP-84 life cycle. The identification and characterization of novel depolymerases, such as TP84_26, hold promise for innovative strategies to combat bacterial infections and improve various industrial processes.
Collapse
Affiliation(s)
- Beata Łubkowska
- Faculty of Health and Life Sciences, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland
| | - Ireneusz Sobolewski
- Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (K.A.); (A.Z.-S.); (P.M.S.)
| | - Katarzyna Adamowicz
- Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (K.A.); (A.Z.-S.); (P.M.S.)
| | - Agnieszka Zylicz-Stachula
- Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (K.A.); (A.Z.-S.); (P.M.S.)
| | - Piotr M. Skowron
- Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (I.S.); (K.A.); (A.Z.-S.); (P.M.S.)
| |
Collapse
|
3
|
Partal R, Murat Hocaoglu S, Yigit NÖ. Acute inhibition of hospital and medical laboratory wastewater on activated sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:262-271. [PMID: 35849543 DOI: 10.1080/09593330.2022.2103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Sustainable operation is an essential challenge in many municipal wastewater treatment plants. Among many types of wastewater mixed in a sewer, healthcare wastewaters need special attention due to their hazardous substance content, which can be toxic to activated sludge. This study compared the acute inhibitory effects of healthcare wastewaters (HW) and medical laboratory wastewater (MLW) on conventional activated sludge (CAS) and membrane bioreactor (MBR). The sensitivity test showed that nitrifying bacteria (NBs) in MBR sludge have higher resistance to acute toxicity than the CAS. Compared with HW, MLW caused much higher inhibition on both sludges. When the ratio of HW in the tested domestic wastewater was 10%, inhibition of NBs was 39% in AS, while it was 31% in MBR. When the ratio of MLW in the tested domestic wastewater was only 10%, 72% of NBs in AS and 57% of NBs in MBR were already inhibited. The higher resistance of NB in MBR may be explained by the diversity of microorganisms in the MBR operated at high sludge ages. The findings of this study may be used to estimate the acute inhibition effect of HW and MLW discharged directly to the sewage at higher loads.
Collapse
Affiliation(s)
| | | | - Nevzat Özgu Yigit
- Faculty of Engineering, Department of Environmental Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|