1
|
Golia EE, Barbieri E, Papadimou SG, Alexiadis D. Energy, Aromatic, and Medicinal Plants' Potential and Prospects for the Remediation of Potentially Toxic Element-Contaminated Agricultural Soils: A Critical Meta-Analysis. TOXICS 2024; 12:914. [PMID: 39771129 PMCID: PMC11728623 DOI: 10.3390/toxics12120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods.
Collapse
Affiliation(s)
- Evangelia E. Golia
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
| | - Edoardo Barbieri
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
- Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Sotiria G. Papadimou
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
- School of Agricultural Sciences, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Dimitrios Alexiadis
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
| |
Collapse
|
2
|
Affholder MC, Cohen GJV, Gombert-Courvoisier S, Mench M. Inter and intraspecific variability of dieldrin accumulation in Cucurbita fruits: New perspectives for food safety and phytomanagement of contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160152. [PMID: 36395833 DOI: 10.1016/j.scitotenv.2022.160152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to past agricultural practices, it is common to identify arable soils contaminated with persistent and potentially toxic organochlorine pesticides (OCPs). Occurrence of OCPs, including dieldrin, in vegetables can lead to chronic exposure of the consumers. Some market vegetables, particularly the Cucurbitaceae, are known to accumulate high OCP concentrations. Dieldrin concentration in Cucurbita fruits can exceed the Maximal Residue Limit (MRL) resulting in cultivation and sale restrictions for market gardeners. To assess the intra- and interspecific variability of Cucurbitaceae species for low dieldrin concentration in fruits could be a solution. Here, 24 varieties from seven Cucurbitaceae species were cultivated outdoors in large pots, until fruiting, in soils historically contaminated with dieldrin. More than 330 fruits were harvested and analyzed for determining the inter and intraspecific variability of dieldrin accumulation. Significant interspecific differences occurred with mean fruit concentration ranging between 4.2 ± 7.0 and 85.0 ± 19.4 μg dieldrin kg-1 fresh weigh (FW) in watermelons (C. lanatus L.) and cucumbers (C. sativus L.), respectively. Intraspecific differences only occurred for Cucurbita pepo L. with mean concentration ranging between 4.9 ± 1.1 and 70.3 ± 3.6 μg dieldrin kg-1 FW for the varieties Noire maraîchère and Orélia, respectively. For this plant species, the influence of soil concentration, plant exposure time and biomass on fruit dieldrin concentration depended mainly on varieties.
Collapse
Affiliation(s)
- M-C Affholder
- Univ. Bordeaux/Bordeaux-INP, CNRS, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France; Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 cedex Pessac, France.
| | - G J V Cohen
- Univ. Bordeaux/Bordeaux-INP, CNRS, EPOC-PROMESS UMR 5805, 1 allée F. Daguin, 33607 Pessac, France
| | - S Gombert-Courvoisier
- Univ. Bordeaux-Montaigne, Univ. Bordeaux, Ecole Nationale Supérieure d'Architecture et de Paysage de Bordeaux, CNRS, PASSAGES UMR 5319, Pessac, France
| | - M Mench
- Univ. Bordeaux, INRAE, BIOGECO, Allée Geoffroy St-Hilaire - bât. B2, CS 50023, 33615 cedex Pessac, France
| |
Collapse
|
3
|
Treatment of Sewage Sludge Compost Leachates on a Green Waste Biopile: A Case Study for an On-Site Application. Processes (Basel) 2022. [DOI: 10.3390/pr10061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This work proposes a suitable treatment for the leachates from a sewage sludge composting process using a specific windrow (biopile). The biopile’s evolution and organic content degradation were followed for 2 months with regular leachate spraying to assess the physico-chemical and biological impacts, and determine the risk of enrichment with certain monitored pollutants. The final objective was the valorization of the biopile substrates in the composting process, while respecting the quality standards of use in a circular economy way. Classical physico-chemical parameters (pH, conductivity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), etc.) were measured in the leachates and in the water-extractable and dry-solid fractions of the biopile, and the catabolic evolution of the micro-organisms (diversity and activities), as well as the enrichment with persistent organic pollutants (POPs) (prioritized PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls)), were determined. The results showed that the microbial populations that were already present in the biopile, and that are responsible for biodegradation, were not affected by leachate spraying. Even when the studied compost leachate was highly concentrated with ammonium nitrogen (10.4 gN L−1 on average), it significantly decreased in the biopile after 2 weeks. A study on the evolution of the isotopic signature (δ15 N) confirmed the loss of leachate nitrogen in its ammoniacal form. The bio-physico-chemical characteristics of the biopile at the end of the experiment were similar to those before the first spraying with leachate. Moreover, no significant enrichment with contaminants (metal trace elements, volatile fatty acids, or persistent organic pollutants) was observed. The results show that it would be possible for composting platforms to implement this inexpensive and sustainable process for the treatment of leachates.
Collapse
|
4
|
Abstract
Two massive wastes are cigarette butts (CB) and stone wool (SW), both representing a threat to the environment. Although the cellulose acetate filters (CAF) in CB are long-term degradable, SW soilless substrates are not. Here, a soilless substrate for growing ornamental plants was manufactured with CAF and compared to commercial SW substrate. CB treatment consisted of a washing in boiling water with a dramatic reduction of pollutants in CAF. Then, cleaned filters were separated, dried, carded to fibers, and subsequently compacted into plugs. The trace pollutants in recycled CAF substrate did not negatively affect the germination of Spartium junceum L. and Lavandula angustifolia Miller seeds as well as the root development of Salvia officinalis L. and Salvia rosmarinus Schleid. stem cuttings. Plants grown in recycled CAF showed a differential species-dependent change of pigments in comparison with those in SW, without compromising their photosynthesis performance. Overall, the results demonstrated that these plants can be well established and grow in recycled CAF, as comparable to SW substrate. This study highlights a novel and promising solution in CAF recycling by turning this litter into an efficient soilless substrate for growing ornamental plants, thus limiting the use of SW and indirectly decreasing its industrial waste flow.
Collapse
|
5
|
Functional Trait-Based Screening of Zn-Pb Tolerant Wild Plant Species at an Abandoned Mine Site in Gard (France) for Rehabilitation of Mediterranean Metal-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155506. [PMID: 32751536 PMCID: PMC7432068 DOI: 10.3390/ijerph17155506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022]
Abstract
The selection of plant species at mine sites is mostly based on metal content in plant parts. Recent works have proposed referring to certain ecological aspects. However, plant traits for plant metal-tolerance still need to be accurately assessed in the field. An abandoned Zn-Pb mine site in Gard (France) offered the opportunity to test a set of ecological criteria. The diversity of micro-habitats was first recorded through floristic relevés and selected categorical and measured plant traits were compared for plant species selection. The floristic composition of the study site consisted in 61 plant species from 31 plant families. This approach enabled us to focus on seven wild plant species naturally growing at the mining site. Their ability to form root symbioses was then observed with a view to phytostabilization management. Four species were considered for phytoextraction: Noccaea caerulescens (J. et C. Presl) FK Meyer, Biscutella laevigata L., Armeria arenaria (Pers.) Schult. and Plantago lanceolata L. The metal content of their aerial and root parts was then determined and compared with that of soil samples collected at the same site. This general approach may lead to the development of a knowledge base for assessment of the ecological restoration trajectory of the site and can help in plant selection for remediation of other metal-rich soils in the Mediterranean area based not only on metal removal but on ecological restoration principles.
Collapse
|