1
|
Iqbal A, Ullah H, Iqbal M, Khan MS, Ullah RS, Gul Z, Rehman R, Altaf AA, Ullah S. MOF UiO-66 and its composites: design strategies and applications in drug and antibiotic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35922-6. [PMID: 39885068 DOI: 10.1007/s11356-025-35922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal. This article explores the potential of MOFs like UiO-66 (University of Oslo-66) to remove pharmaceutical and antibiotic contaminants from water. Zr-based MOF UiO-66 is used in water treatment due to its well-known chemical, thermal, and mechanical stability. The review covers several modifications, including metal doping, organic-group functionalization, and composite construction, to increase the UiO-66 selectivity and adsorption capacity for various pollutants. Recent studies have shown that UiO-66 is an effective material for pharmaceutical pollutants such as ciprofloxacin, tetracycline, and sulfamethoxazole removal. Practical application, photostability, and large-scale synthesis remain challenges in water treatment methods. Moreover, recent studies indicate the recycling potential of UiO-66 that validates its capability to retain its efficiency over multiple cycles, indicating its cost-effectiveness and sustainability. Besides, the toxicity of UiO-66 and its derivatives, which occur during water treatment, has also been highlighted, addressing the health and environmental risks. Prospective research directions include designing flaws, producing stable analogs of UiO-66, and transforming powdered UiO-66 into other forms that might be utilized, including films and membranes. This review is crucial as no comprehensive literature is currently available that thoroughly discusses the design techniques and applications of UiO-66 and its composites for drug and antibiotic removal. Our study specifically concentrates on the latest developments, emphasizing particular alterations that improve performance in water treatment.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Maham Iqbal
- School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore, 54590, Punjab, Pakistan
| | - Malik Saddam Khan
- Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Raja Summe Ullah
- Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Zarif Gul
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Rafia Rehman
- Section of Phytochemistry and Natural Products, Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Punjab, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan.
| |
Collapse
|
2
|
Rashidi S, Soleiman-Beigi M, Kohzadi H. Rapid and efficient removal of water-soluble dyes via natural asphalt oxide as a new carbonaceous super adsorbent; NA-oxide synthesis and characterization. Sci Rep 2024; 14:24384. [PMID: 39420048 PMCID: PMC11487275 DOI: 10.1038/s41598-024-75106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
In this study, natural asphalt was oxidized to synthesize a new nano-structure adsorbent for dye removal. The functionalization of natural asphalt by oxidation introduced new properties that influenced its activity. The process of oxidizing natural asphalt with potassium permanganate resulted in a low-cost adsorbent, which can potentially be a more affordable option compared with synthetic alternatives. Characterization analysis confirmed the enhanced surface area, improving dye interaction and adsorption. The interconnected channels and capillaries of the oxidized natural asphalt facilitated the capillary action drawing in liquids, including dyes. The distinctive porosity of natural asphalt oxide (NA-oxide) was noted, and the experimental results showed that the NA-oxide nanoadsorbent efficiently adsorbed cationic and anionic dyes in water, with maximum capacities of 14.68 mg.g-1, 17.81 mg.g-1 and 16.47 mg.g-1 for methyl orange, methylene blue and Rhodamine B, respectively. The study investigated various parameters, such as concentration, adsorption dose, pH, contact time, and temperature, affecting the dye removal process. Langmuir, Freundlich, and Temkin isotherms along with pseudo-first and pseudo-second-order kinetic equations were applied to assess the adsorption process, indicating that dyes adhered to the pseudo-first-order model and Langmuir isotherm. Analysis of MO, MB, and RhB dyes revealed conformity to Langmuir isotherm and first-order kinetics. Thermodynamic evaluations like ΔH°, ΔS°, and ∆G° displayed the exothermic and spontaneous nature of dye adsorption on the NA-oxide adsorbent. Furthermore, the absorbent displayed remarkable stability with a recovery rate of 98.45% after ten cycles, signifying its potential for enduring effectiveness in dye removal processes.
Collapse
Affiliation(s)
- Shabnam Rashidi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mohammad Soleiman-Beigi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| | - Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| |
Collapse
|
3
|
Umare S, Thawait AK, Dhawane SH. Remediation of arsenic and fluoride from groundwater: a critical review on bioadsorption, mechanism, future application, and challenges for water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37877-37906. [PMID: 38771540 DOI: 10.1007/s11356-024-33679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
In the past few decades, the excessive and inadequate use of technological advances has led to groundwater contamination, mainly caused by organic and inorganic pollutants, which are highly harmful to human health, agriculture, water bodies, and aquaculture. Among all toxic pollutants, As and F- play a significant role in groundwater contamination due to their excellent reactivity with other elements. To mitigate the prevalence of arsenic and fluoride within the water system, the use of biochar gives an attractive strategy for removing them mainly because of the substantial surface area, pore size, pH, aromatic structure, and functional groups inherent in biochar, which are primarily dependent upon its raw material and pyrolysis temperature. Researcher develops different methods like physiochemical and electrochemical for treating arsenic and fluoride contamination. Among all removal methods, bioadsorption using agricultural waste residues shows effective/feasible removal of As and F- due to its low cost, ecofriendly nature, readily available, and efficient reuse compared with several other harmful synthetic materials that demand costly design specifications. This study discusses current developments in bioadsorption methods for As and F- that use agricultural-based biomaterials and describes the prevailing state of arsenic and fluoride removal strategies that use biomaterials precisely.
Collapse
Affiliation(s)
- Shubhangi Umare
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Ajay K Thawait
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Sumit H Dhawane
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
| |
Collapse
|
4
|
Das K, Sukul U, Chen JS, Sharma RK, Banerjee P, Dey G, Taharia M, Wijaya CJ, Lee CI, Wang SL, Nuong NHK, Chen CY. Transformative and sustainable insights of agricultural waste-based adsorbents for water defluoridation: Biosorption dynamics, economic viability, and spent adsorbent management. Heliyon 2024; 10:e29747. [PMID: 38681598 PMCID: PMC11046213 DOI: 10.1016/j.heliyon.2024.e29747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
With the progression of civilization, the harmony within nature has been disrupted, giving rise to various ecocidal activities that are evident in every spheres of the earth. These activities have had a profound and far-reaching impact on global health. One significant example of this is the presence of fluoride in groundwater exceeding acceptable limits, resulting in the widespread occurrence of "Fluorosis" worldwide. It is imperative to mitigate the concentration of fluoride in drinking water to meet safety standards. While various defluoridation techniques exist, they often have drawbacks. Biosorption, being a simple, affordable and eco-friendly method, has gained preference for defluoridation. However, its limited commercialization underscores the pressing need for further research in this domain. This comprehensive review article offers a thorough examination of the defluoridation potential of agro-based adsorbents, encompassing their specific chemical compositions and preparation methods. The review presents an in-depth discussion of the factors influencing fluoride biosorption and conducts a detailed exploration of adsorption isotherm and adsorption kinetic models to gain a comprehensive understanding of the nature of the adsorption process. Furthermore, it evaluates the commercial viability through an assessment of regeneration potential and a cost analysis of these agro-adsorbents, with the aim of facilitating the scalability of the defluoridation process. The elucidation of the adsorption mechanism and recommendations for overcoming challenges in large-scale implementation offer a comprehensive outlook on this eco-friendly and sustainable approach to fluoride removal. In summary, this review article equips readers with a lucid understanding of agro-adsorbents, elucidates their ideal conditions for improved performance, offers a more profound insight into the fluoride biosorption mechanism, and introduces the concept of effective spent adsorbent management.
Collapse
Affiliation(s)
- Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Md. Taharia
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Christian J. Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surbaya, 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Kalijudan 37, Surabaya, 60114, Indonesia
| | - Cheng-I Lee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan
| | - Nguyen Hoang Kim Nuong
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| |
Collapse
|
5
|
Yang Y, Guo Y, Qiu Z, Gong W, Wang Y, Xie Y, Xiao Z. In situ growth of Zr-based metal-organic frameworks on cellulose sponges for Hg 2+ and methylene blue removal. Carbohydr Polym 2024; 328:121750. [PMID: 38220333 DOI: 10.1016/j.carbpol.2023.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are characterised by high porosity levels and controllable structures, making them ideal adsorbents for wastewater. However, obtaining substrate materials with mechanical stability, excellent pore accessibility, and good processability for compositing MOF crystal powders to adsorb multiple pollutants in complex aqueous environments is challenging. In this study, porous MOFs@ modified cellulose sponge (MCS) composites were fabricated using MCS as a scaffold to provide anchoring sites for the coordination of Zr4+ ions and further in situ synthesis of MOFs, namely UiO-66@MCS and UiO-66-NH2@MCS, which effectively removed heavy metal ions and organic dyes. MOFs@MCS composites exhibit excellent water and dimensional stability, maintaining the pore structure by ambient drying during reuse. Compared with UiO-66@MCS composite, UiO-66-NH2@MCS composite exhibited a higher adsorption capacity of 224.5 mg·g-1 for Hg2+ and 400.9 mg·g-1 for methylene blue (MB). The adsorption of Hg2+ onto the MOFs@MCS composites followed the Langmuir and pseudo-second-order models, whereas the Freundlich and pseudo-second-order models were more suitable for MB adsorption. Moreover, the MOFs@MCS composites exhibited excellent reusability and were selective for the removal of Hg2+. Overall, this approach effectively combines Zr-based MOFs with mechanically and dimensionally stable porous cellulose sponges, rendering the approach suitable for purifying complex wastewater.
Collapse
Affiliation(s)
- Yanxiao Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yunfeng Guo
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zhe Qiu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Weihua Gong
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yonggui Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China.
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zefang Xiao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| |
Collapse
|
6
|
Ojok W, Ntambi E, Bolender J, Wasswa J, Wanasolo W, Moodley B. Synthesis and characterization of hematite biocomposite using cassava starch template for aqueous phase removal of fluoride. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
7
|
Rego RM, Kurkuri MD, Kigga M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. CHEMOSPHERE 2022; 302:134845. [PMID: 35525446 DOI: 10.1016/j.chemosphere.2022.134845] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are a versatile class of porous materials offering unprecedented scope for chemical and structural tunability. On account of their synthetic versatility, tunable and exceptional host-guest chemistry they are widely utilized in many prominent water remediation techniques. However, some of the MOFs present low structural stabilities specifically in aqueous and harsh chemical conditions which impedes their potential application in the field. Among the currently explored MOFs, UiO-66 exhibits structural robustness and has gained immense scientific popularity. Built with a zirconium-terephthalate framework, the strong Zr-O bond coordination contributes to its stability in aqueous, chemical, and thermal conditions. Moreover, other exceptional features such as high surface area and uniform pore size add to the grand arena of porous nanomaterials. As a result of its stable nature, UiO-66 offers relaxed admittance towards various functionalization, including synthetic and post-synthetic modifications. Consequently, the adsorptive properties of these highly stable frameworks have been modulated by the addition of various functionalities. Moreover, due to the presence of catalytically active sites, the use of UiO-66 has also been extended towards the degradation of pollutants. Furthermore, to solve the practical handling issues of the crystalline powdered forms, UiO-66 has been incorporated into various membrane supports. The incorporation of UiO-66 in various matrices has enhanced the rejection, permeate flux, and anti-fouling properties of membranes. The combination of such exceptional characteristics of UiO-66 MOF has expanded its scope in targeted purification techniques. Subsequently, this review highlights the role of UiO-66 in major water purification techniques such as adsorption, photocatalytic degradation, and membrane separation. This comprehensive review is expected to shed light on the existing developments and guide the inexhaustible futuristic scope of UiO-66 MOF.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
8
|
Huang L, Luo Z, Huang X, Wang Y, Yan J, Liu W, Guo Y, Babu Arulmani SR, Shao M, Zhang H. Applications of biomass-based materials to remove fluoride from wastewater: A review. CHEMOSPHERE 2022; 301:134679. [PMID: 35469899 DOI: 10.1016/j.chemosphere.2022.134679] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is one of the essential trace elements for the human body, but excessive fluoride will cause serious environmental and health problems. This paper summarizes researches on the removal of fluoride from aqueous solutions using newly developed or improved biomass materials and biomass-like organic materials in recent years. These biomass materials are classified into chitosan, microorganisms, lignocellulose plant materials, animal attribute materials, biological carbonized materials and biomass-like organic materials, which are explained and analyzed. By comparing adsorption performance and mechanism of adsorbents for removing fluoride, it is found that carbonizing materials and modifying adsorbents with metal ions are more beneficial to improving adsorption efficiency and the adsorption mechanisms are various. The adsorption capacities are still considerable after regeneration. This paper not only reviews the properties of these materials for fluoride removal, but also focuses on the comparison of materials performance and fluoride removal mechanism. Herein, by discussing the improved adsorption performance and research technology development of biomass materials and biomass-like organic materials, various innovative ideas are provided for adsorbing and removing contaminants.
Collapse
Affiliation(s)
- Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Zhixuan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yian Wang
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Wei Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Yufang Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | | | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China.
| |
Collapse
|
9
|
Peng H, Xiong W, Yang Z, Xu Z, Cao J, Jia M, Xiang Y. Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128684. [PMID: 35303663 DOI: 10.1016/j.jhazmat.2022.128684] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution has drawn forth advanced materials and progressive techniques concentrating on sustainable development. Metal-organic frameworks (MOFs) have aroused vast interest resulting from their excellent property in structure and function. Conversely, powdery MOFs in highly crystalline follow with fragility, poor processability and recoverability. Aerogels distinguished by the unique three-dimensional (3D) interconnected pore structures with high porosity and accessible surface area are promising carriers for MOFs. Given these, combining MOFs with aerogels at molecule level to obtain advanced composites is excepted to further enhance their performance with higher practicability. Herein, we focus on the latest studies on the MOFs@aerogel composites. The construction of MOFs@aerogel with different synthetic routes and drying methods are discussed. To explore the connection between structure and performance, pore structure engineering and quantitation of MOFs content are outlined. Furthermore, various types of MOFs@aerogel composites and their carbonized derivatives are reviewed, as well as the applications of MOFs@aerogel for environmental remediation referring to water purification and air clearing. More importantly, outlooks towards these emerging advanced composites have been presented from the perspective of practical application and future development.
Collapse
Affiliation(s)
- Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhengyong Xu
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Jiao Cao
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
10
|
Variation of Water Quality in Ningxia Section of the Yellow River in Recent 5 Years. J CHEM-NY 2022. [DOI: 10.1155/2022/7704513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Yellow River is very important for human health and social development in China to require good water quality. This study selected the Ningxia section of the Yellow River as the study area to investigate the water quality variation in 2016–2020. A total of 9 water quality parameters were monitored, and 8 parameters including pH, dissolved oxygen, biological oxygen demand, chemical oxygen demand, total phosphate, fluoride, ammonia-nitrogen, and permanganate index were in the range of Class II standard requirement. Dissolved oxygen concentrations ranged from 7.5 to 9.4 mg/L. However, total nitrogen concentrations in 2018–2020 ranged from 1.87 to 2.8 mg/L to cause the pollution. Both the Nemerow index method and the contamination degree method showed that total nitrogen with high concentration exerted the water pollution. Principal component analysis also proved this. Stricter environmental management strategies for controlling total nitrogen should be taken in the future. The findings provided some useful information for water pollution of the Ningxia section of the Yellow River.
Collapse
|
11
|
The simple synthesis of metal organic frameworks with high fluoride adsorption performance from water. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Sriram G, Bendre A, Altalhi T, Jung HY, Hegde G, Kurkuri M. Surface engineering of silica based materials with Ni-Fe layered double hydroxide for the efficient removal of methyl orange: Isotherms, kinetics, mechanism and high selectivity studies. CHEMOSPHERE 2022; 287:131976. [PMID: 34438207 DOI: 10.1016/j.chemosphere.2021.131976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, low-cost diatomite (DE) and bentonite (BE) materials were surface modified with Ni-Fe layered double hydroxide (LDHs) (represented as NFD and NFB respectively), using a simple co-precipitation procedure for the removal of methyl orange (MO) dye from water. The adsorbents of both before and after MO adsorption have been studied by XRD, N2 adsorption-desorption isotherm, FTIR, FESEM-EDX and XPS characterization. The zeta potential analysis was used to observe the surface charge of adsorbents within the pH ranges of 4-10. The MO removal efficiency was significantly improved after LDHs modification, showing a 94.7% and 92.6% efficiency for NFD and NFB at pH 6, respectively. Whereas bare DE and BE have shown removal efficiency of 15.5% and 4.9% respectively. The maximum adsorption capacities of NFD and NFB using the Langmuir isotherm model were found to be 246.9 mgg-1 and 215.9 mgg-1 respectively. The designed NFD showed high selectivity towards anionic-based dyes from water and also the effect of salts shows the dye removal percentage was increased and decreased for the addition of Na2SO4 and NaCl, respectively. The reusability of NFD and NFB have been studied for a maximum of five cycles and they can remove MO up to four cycles. Therefore, the designed adsorbents can be very effective towards the removal of MO from water and they may be useful for dye-based wastewater treatment.
Collapse
Affiliation(s)
- Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Akhilesh Bendre
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Basavanagudi, Bengaluru, 560019, India
| | - Mahaveer Kurkuri
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
13
|
Shyam S, Arun J, Gopinath KP, Ribhu G, Ashish M, Ajay S. Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: A review on challenges, commercialization, and future perspectives. CHEMOSPHERE 2022; 286:131490. [PMID: 34293561 DOI: 10.1016/j.chemosphere.2021.131490] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Excessive phosphate run-off with total phosphorus concentration greater than 20 μg P L-1 triggers the growth of harmful algal species in waterbodies and potentially leads to eutrophication. This has severe negative implications on aquatic environment and impacts human health. The annual economic impact of harmful algal blooms is reported to be as high as $25 million for public health and commercial fishery sector, $29 million for recreation/tourism sector and $2 million for monitoring and management. Adsorption is widely considered as an effective and economic strategy to achieve extremely low concentration of phosphorus. The char produced by valorizing various waste biomasses have been gaining attention in phosphorus remediation owing to their availability, their ability to regenerate and reuse. This review paper exclusively focuses on utilizing hydrochar and biochar synthesized from waste biomass, respectively, through hydrothermal carbonization and slow pyrolysis to mitigate phosphorus concentration and potential strategies for handling the spent char. The key mechanisms involved in phosphate adsorption are electrostatic interaction, ion exchange and complexation. The maximum adsorption capacity of hydrochar and biochar ranges from 14-386 mg g-1 and 3-887 mg g-1, respectively. Hydrochar and biochar are cost-effective alternative to commercial activated carbon and spent char can be used for multiple adsorption cycles. Furthermore, extensive research studies on optimizing the feedstock, reaction and activation conditions coupled with technoeconomic analysis and life cycle assessment could pave way for commercialization of char-based adsorption technology.
Collapse
Affiliation(s)
- Sivaprasad Shyam
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States
| | - Jayaseelan Arun
- Centre for Waste Management - International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
| | | | - Gautam Ribhu
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Manandhar Ashish
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States
| | - Shah Ajay
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States.
| |
Collapse
|
14
|
Sharma R, Sharma R, Parveen K, Pant D, Malaviya P. Comprehensive and critical appraisal of plant-based defluoridation from environmental matrices. CHEMOSPHERE 2021; 281:130892. [PMID: 34044304 DOI: 10.1016/j.chemosphere.2021.130892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is recognized as one of the global environmental threats because of its non-biodegradable nature and long-term persistence in the environment. This has created the dire need to explore various defluoridation techniques (membrane process, adsorption, precipitation, reverse osmosis, ion exchange, and electrocoagulation). Owing to their cost ineffectiveness and high operational costs, these technologies failed to find any practical utility in fluoride remediation. Comparatively, defluoridation techniques involving the use of low-cost plant-derived adsorbents and fluoride phytoremediators are considered better alternatives. Through this review, an attempt has been made to critically synthesize information about various plant-based bioadsorbents and hyperaccumulators from existing literature. Moreover, mechanisms underlying the fluoride adsorption and accumulation by plants have been thoroughly discussed that will invigorate the researchers to develop novel ideas about process/product modifications to further enhance the removal potential of the adsorbents and plants. Literature survey unravels that various low-cost plant-derived adsorbents have shown their efficacy in defluoridation, yet there is an urgent need to explore their pragmatic application on a commercial scale.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Khalida Parveen
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
15
|
Wang G, Yan T, Shen J, Zhang J, Zhang D. Capacitive Removal of Fluoride Ions via Creating Multiple Capture Sites in a Modulatory Heterostructure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11979-11986. [PMID: 34427438 DOI: 10.1021/acs.est.1c03228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluoride pollution has become a major concern because of its adverse effects on human health. However, the removal capacity of defluorination agents in traditional methods is far from satisfactory. Herein, capacitive removal of F- ions via creating multiple capture sites in a modulatory heterostructure has been originally demonstrated. The heterostructure of uniformly dispersed Al2O3 coating on hollow porous nitrogen-doped carbon frameworks was precisely synthesized by atomic layer deposition. An exceptional F- ion removal efficiency at 1.2 V (95.8 and 92.9% in 5 and 10 mg/L F- solutions, respectively) could be finally achieved, with a good regeneration ability after 20 consecutive defluorination cycles. Furthermore, we investigated the removal mechanisms of F- ions by in situ Raman, in situ X-ray diffraction, and ex situ X-ray photoelectron spectroscopy measurements. The promotional removal capacity was realized by the multiple capture sites of the reversible conversion of Al-F species and the insertion of F- ions into the carbon skeleton. This work offers an important new pathway and deep understanding for efficient removal of F- ions from wastewater.
Collapse
Affiliation(s)
- Guizhi Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Junjie Shen
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
16
|
Rego RM, Sriram G, Ajeya KV, Jung HY, Kurkuri MD, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125941. [PMID: 34492868 DOI: 10.1016/j.jhazmat.2021.125941] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
17
|
Liu J, Wu J, Wang J, Ma J, Sun L, Du Y, Li Y, Li H. Surface engineering of diatomite using nanostructured Zn compounds for adsorption and sunlight photocatalysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rego RM, Kuriya G, Kurkuri MD, Kigga M. MOF based engineered materials in water remediation: Recent trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123605. [PMID: 33264853 DOI: 10.1016/j.jhazmat.2020.123605] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
The significant upsurge in the demand for freshwater has prompted various developments towards water sustainability. In this context, several materials have gained remarkable interest for the removal of emerging contaminants from various freshwater sources. Among the currently investigated materials for water treatment, metal organic frameworks (MOFs), a developing class of porous materials, have provided excellent platforms for the separation of several pollutants from water. The structural modularity and the striking chemical/physical properties of MOFs have provided more room for target-specific environmental applications. However, MOFs limit their practical applications in water treatment due to poor processability issues of the intrinsically fragile and powdered crystalline forms. Nevertheless, growing efforts are recognized to impart macroscopic shapability to render easy handling shapes for real-time industrial applications. Furthermore, efforts have been devoted to improve the stabilities of MOFs that are subjected to fragile collapse in aqueous environments expanding their use in water treatment. Advances made in MOF based material design have headed towards the use of MOF based aerogels/hydrogels, MOF derived carbons (MDCs), hydrophobic MOFs and magnetic framework composites (MFCs) to remediate water from contaminants and for the separation of oils from water. This review is intended to highlight some of the recent trends followed in MOF based material engineering towards effective water regeneration.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Gangalakshmi Kuriya
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
19
|
Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv Colloid Interface Sci 2020; 282:102198. [PMID: 32579950 DOI: 10.1016/j.cis.2020.102198] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
The presence of toxic pollutants such as dyes and metal ions at higher concentrations in water is very harmful to the environment. Removal of these pollutants using diatomaceous earth or diatomite (DE) and surface-modified DE has been extensively explored due to their excellent physio-chemical properties and low cost. Therefore, naturally available DE being inexpensive, their surface modified adsorbents could be one of the potential candidates for the wastewater treatment in the future. In this context, the current review has been summarized for the removal of both pollutants i.e., dyes and metal ions by surface-modified DE using the facile adsorption process. In addition, this review is prominently focused on the various modification process of DE, their cost-effectiveness; the physio-chemical characteristics and their maximum adsorption capacity. Further, real-time scenarios of reported adsorbents were tabulated based on the cost of the process along with the adsorption capacity of these adsorbents.
Collapse
|
20
|
Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020; 12:E1669. [PMID: 32512711 PMCID: PMC7352877 DOI: 10.3390/nu12061669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perchlorate-induced natrium-iodide symporter (NIS) interference is a well-recognized thyroid disrupting mechanism. It is unclear, however, whether a chronic low-dose exposure to perchlorate delivered by food and drinks may cause thyroid dysfunction in the long term. Thus, the aim of this review was to overview and summarize literature results in order to clarify this issue. METHODS Authors searched PubMed/MEDLINE, Scopus, Web of Science, institutional websites and Google until April 2020 for relevant information about the fundamental mechanism of the thyroid NIS interference induced by orally consumed perchlorate compounds and its clinical consequences. RESULTS Food and drinking water should be considered relevant sources of perchlorate. Despite some controversies, cross-sectional studies demonstrated that perchlorate exposure affects thyroid hormone synthesis in infants, adolescents and adults, particularly in the case of underlying thyroid diseases and iodine insufficiency. An exaggerated exposure to perchlorate during pregnancy leads to a worse neurocognitive and behavioral development outcome in infants, regardless of maternal thyroid hormone levels. DISCUSSION AND CONCLUSION The effects of a chronic low-dose perchlorate exposure on thyroid homeostasis remain still unclear, leading to concerns especially for highly sensitive patients. Specific studies are needed to clarify this issue, aiming to better define strategies of detection and prevention.
Collapse
Affiliation(s)
- Giuseppe Lisco
- ASL Brindisi, Unit of Endocrinology, Metabolism & Clinical Nutrition, Hospital “A. Perrino”, Strada per Mesagne 7, 72100 Brindisi, Puglia, Italy;
| | - Anna De Tullio
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
- Clinic of Endocrinology and Metabolic Disease, Conversano Hospital, Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy;
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine—Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Puglia, Italy; (A.D.T.); (V.A.G.)
| |
Collapse
|