1
|
Mi P, Li N, Ai K, Li L, Yuan D. AhR-mediated lipid peroxidation contributes to TCDD-induced cardiac defects in zebrafish. CHEMOSPHERE 2023; 317:137942. [PMID: 36702031 DOI: 10.1016/j.chemosphere.2023.137942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant that activates the aryl hydrocarbon receptor (AhR) pathway, has been reported to cause cardiac damage. However, the mechanism underlying AhR-induced cardiac defects in response to TCDD exposure remains unclear. In this study, we characterized the impacts of TCDD exposure on heart morphology and cardiac function in zebrafish. TCDD exposure in the early developmental stage of zebrafish embryos led to morphological heart malformation and pericardial edema, concomitant with reduced cardiac function. These cardiac defects were attenuated by inhibiting AhR activity with CH223191. Transcriptome profiling showed that, along with an upregulation of the AhR signaling pathway by TCDD treatment, the expression of pro-ferroptotic genes was upregulated, while that of genes implicated in glutathione metabolism were downregulated. Moreover, lipid peroxidation, as indicated by malonaldehyde (MDA) production, was increased in TCDD-exposed cardiac tissue. Accordingly, inhibiting lipid peroxidation with liproxstatin-1 reversed the adverse cardiac effects induced by TCDD treatment. Taken together, our findings demonstrate that AhR-mediated lipid peroxidation contributes to cardiac defects in the early developmental stage in zebrafish embryos exposed to TCDD.
Collapse
Affiliation(s)
- Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Ai
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| | - Detian Yuan
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Chen G, Wang M, Zhu P, Wang G, Hu T. Adverse effects of SYP-3343 on zebrafish development via ROS-mediated mitochondrial dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129382. [PMID: 35749898 DOI: 10.1016/j.jhazmat.2022.129382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
As a newly-invented and highly-efficiency strobilurin fungicide, pyraoxystrobin (SYP-3343) has been recognized as a highly poisonous toxin for a variety of aquatic organisms. Nevertheless, the developmental toxicity and potential mechanism of SYP-3343 have not been well-documented. The results showed that SYP-3343 was relatively stable and maintained within the range of 20 % in 24 h, and the LC50 value to embryos at 72 hpf was 17.13 μg/L. The zebrafish embryotoxicity induced by 1, 2, 4, and 8 μg/L SYP-3343 is demonstrated by repressive embryo incubation, enhancive mortality rate, abnormal heart rate, malformed morphological characteristic, and impaired spontaneous coiling, indicating SYP-3343 mostly exerted its toxicity in a dose- and time-dependent manner. Besides SYP-3343 was critically involved in regulating cell cycle, mitochondrial membrane potential, and reactive oxygen species production as well as zebrafish primary cells apoptosis, which can be mitigated using antioxidant N-acetyl-L-cysteine. A significant change occurred in total protein content, the biochemical indices, and antioxidant capacities owing to SYP-3343 exposure. Additionally, SYP-3343 altered the mRNA levels of heart development-, mitochondrial function-, and apoptosis-related genes in zebrafish embryos. These results indicated that SYP-3343 induced apoptosis accompanying reactive oxygen species-initiated mitochondrial dysfunction in zebrafish embryos.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Panpan Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
3
|
Zhao G, Zhu Y, Hu J, Gao M, Hong Y. l-selenomethionine induces zebrafish embryo cardiovascular defects via down-regulating expression of lrp2b. CHEMOSPHERE 2022; 290:133351. [PMID: 34933029 DOI: 10.1016/j.chemosphere.2021.133351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Selenium plays crucial roles in maintaining the growth and development of vertebrates including humans. However, excessive selenium in cells will lead to developmental defects and disease. Selenium has been reported to cause severe malformation in zebrafish embryos, but there are few studies on the mechanism of selenium excess-induced cardiovascular defects. In this study, the fertilized zebrafish embryos were treated with selenium for 96 h post fertilization (hpf). Under selenium stress, wild-type embryos showed pericardial edema, heart rate decrease, ectopic accumulation of hemoglobin; fli1-eGFP transgenic zebrafish displayed intersegmental vessel injury; and myl7-eGFP transgenic zebrafish exhibited atrial area increase. RNA-seq data and qRT-PCR results indicated that the expressions of cardiovascular development genes were up-regulated in selenium-stressed embryos. The expressions of lipid metabolism-related and selenium metabolism-related genes were evaluated in embryos. Among the tested genes, the expression of lrp2b was down-regulated in both 24 hpf and 96 hpf embryos. Furthermore, lrp2b-knockdown embryos exhibited the cardiac defects similar to selenium-stress embryos, and the over-expression of lrp2b rescued the selenium-induced defects, indicating that lrp2b might play a key role in regulating selenium cardiotoxicity. In summary, our research evaluates the cardiotoxicity of excessive selenium, and reveals the molecular mechanism of cardiovascular defects in selenium-exposed zebrafish embryos.
Collapse
Affiliation(s)
- Guang Zhao
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Yuejie Zhu
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Jun Hu
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Meng Gao
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Yijiang Hong
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Qiu L, Zhang W, Gong A, Li J. Isolation and identification of a 2,3,7,8-Tetrachlorodibenzo-P-dioxin degrading strain and its biochemical degradation pathway. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:541-551. [PMID: 34150257 PMCID: PMC8172717 DOI: 10.1007/s40201-021-00626-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
This study aims to find a high-efficiency degradation strain which can biodegrade the 2,3,7,8-Tetrachlorodibenzo-P-dioxin (2,3,7,8-TCDD). In this paper, a new fungus strain was isolated from activated sludge of Dagu Drainage River in Tianjin which was able to degrade 2,3,7,8-TCDD in the medium. Based on its morphology and phylogenetic analysis of its 18S rDNA sequence, the strain was identified as Penicillium sp. QI-1. Response surface methodology using central composite rotatable design of cultural conditions was successfully employed for optimization resulting in 87.9 % degradation of 2,3,7,8-TCDD (1 µg/mL) within 6 days. The optimum condition for degrading 2,3,7,8-TCDD was at 31℃ and pH 7.4. The biodegradation process was fitted to a first-order kinetic model. The kinetic equation was Ct=0.939e- 0.133t and its half-life was 5.21d. The fungus strain degraded 2,3,7,8-TCDD to form intermediates, they were 4,5-Dichloro-1,2-benzoquinone, 4,5-Dichlorocatechol, 2-Hydrooxy-1,4-benzoquinone, 1,2,4-Trihydroxybenzene and β-ketoadipic acid. A novel degradation pathway for 2,3,7,8-TCDD was proposed based on analysis of these metabolites. The results suggest that Penicillium sp. QI-1 may be an ideal microorganism for biodegradation of the 2,3,7,8-TCDD-contaminated environments.
Collapse
Affiliation(s)
- Lina Qiu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, 100083 Beijing, China
| | - Weiwei Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, 100083 Beijing, China
- Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing, 100083 China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 People’s Republic of China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, 100083 Beijing, China
| | - Jiandi Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 People’s Republic of China
| |
Collapse
|
5
|
Isoprocarb induces acute toxicity in developing zebrafish embryos through vascular malformation. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|