1
|
Mora CC, Rojas Contreras JA, Rosales Villarreal MC, Urban Martínez JL, Delgado E, Medrano Roldan H, Hernández Rodarte FS, Reyes Jáquez D. Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form. Heliyon 2025; 11:e41878. [PMID: 39872451 PMCID: PMC11770503 DOI: 10.1016/j.heliyon.2025.e41878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
In this study, gold and silver were recovered through a bioleaching process conducted at room temperature over 11 days. Native bacteria and varying ratios of mineral pulp to culture medium (20/80, 37.5/62.5, and 50/50 %) from a mining operation in Zacatecas, Mexico, were evaluated. The mineral was crushed to a particle size of 0.125 inches or smaller, containing gold and silver concentrations of 0.609 g/ton and 138.89 g/ton, respectively. Four native microorganisms were identified using molecular biology techniques and a 16S rRNA gene fragment: Acidovorax citrulli, Brevundimonas albigilva, Sphingomonas korenensis, and Methylobacterium organophilum. The bioleaching system achieved metal extractions of 84.12 % and 63.93 % for gold and silver, respectively. Different microorganisms were identified at various processing times: Sphingomonas korenensis (days 1, 2, 5, 8, and 11), Methylobacterium organophilum (days 1 and 2), Paenibacillus dongdonensis (days 1 and 2), Brevundimonas albigilva (day 5), Ureibacillus manganicus (day 5), Peribacillus simplex (day 8), Niallia circulans (day 8), Massilia atriviolacea (day 11), and Bacillus licheniformis (day 11). The dominant bacterium throughout the process was Sphingomonas korenensis, which appeared at all stages of the experiment.
Collapse
Affiliation(s)
- Cuauhtémoc Contreras Mora
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Juan Antonio Rojas Contreras
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Mayra Cristina Rosales Villarreal
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - José Luis Urban Martínez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Efren Delgado
- Food Science and Technology, Department of Family and Consumer Sciences, New Mexico State University, P.O. Box 30001, Las Cruces, NM, 88003-8001, USA
| | - Hiram Medrano Roldan
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Felipe Samuel Hernández Rodarte
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Damián Reyes Jáquez
- Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| |
Collapse
|
2
|
Mordecai J, Al-Thukair A, Musa MM, Ahmad I, Nzila A. Bacterial Degradation of Petroleum Hydrocarbons in Saudi Arabia. TOXICS 2024; 12:800. [PMID: 39590980 PMCID: PMC11598553 DOI: 10.3390/toxics12110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
The Kingdom of Saudi Arabia (KSA) is the leading oil-exploring and -exploiting country in the world. As a result, contamination of the environment by petroleum products (mainly hydrocarbons) is common, necessitating strategies for their removal from the environment. Much work has been conducted on bacterial degradation of hydrocarbons in the KSA. This review comprehensively analyzed 43 research investigation articles on bacterial hydrocarbon degradation, mainly polyaromatic hydrocarbons (PAHs) within the KSA. More than 30 different bacterial genera were identified that were capable of degrading simple and complex PAHs, including benzo[a]pyrene and coronene. Different strategies for selecting and isolating these bacterial strains and their advantages and disadvantages were highlighted. The review also discussed the origins of sample inocula and the contributions of various research groups to this field. PAH metabolites produced by these bacteria were presented, and biochemical pathways of PAH degradation were proposed. More importantly, research gaps that could enrich our understanding of petroleum product biodegradation mechanisms were highlighted. Overall, the information presented in this paper will serve as a baseline for further research on optimizing bioremediation strategies in all petroleum-contaminated environments.
Collapse
Affiliation(s)
- James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
| | - Assad Al-Thukair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
| | - Musa M. Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Alexis Nzila
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (A.A.-T.); (I.A.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Li S, Zhang S, Xu J, Guo R, Allam AA, Rady A, Wang Z, Qu R. Photodegradation of polycyclic aromatic hydrocarbons on soil surface: Kinetics and quantitative structure-activity relationship (QSAR) model development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123541. [PMID: 38342434 DOI: 10.1016/j.envpol.2024.123541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted much attention because of their widespread existence and toxicity. Photodegradation is the main natural decay process of PAHs in soil. The photodegradation kinetics of benzopyrene (BaP) on 16 kinds of soils and 10 kinds of PAHs on Hebei (HE) soil were studied. The results showed that BaP had the highest degradation rate in Shaanxi (SN) soil (kobs = 0.11 min-1), and anthracene (Ant) was almost completely degraded after 16 h of irradiation in HE soil. Two quantitative structure-activity relationship (QSAR) models were established by the multiple linear regression (MLR) method. The developed QSAR models have good stability, robustness and predictability. The model revealed that the main factors affecting the photodegradation of PAHs are soil organic matter (SOM) and the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (Egap). SOM can function as a photosensitizer to induce the production of active species for photodegradation, thus favoring the photodegradation of PAHs. In addition, compounds with lower Egap are less stable and more reactive, and thus are more prone to photodegradation. Finally, the QSAR model was optimized using machine learning approach. The results of this study provide basic information on the photodegradation of PAHs and have important significance for predicting the environmental behavior of PAHs in soil.
Collapse
Affiliation(s)
- Shuyi Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jianqiao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Gao H, Wu M, Liu H, Ou Y, Zhang T, Duan X. Unraveling the Positive Effect of Soil Moisture on the Bioaugmentation of Petroleum-Contaminated Soil Using Bioinformatics. MICROBIAL ECOLOGY 2023; 86:2436-2446. [PMID: 37278908 DOI: 10.1007/s00248-023-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Petroleum contamination is a severe threat to the soil environment. Previous studies have demonstrated that petroleum degradation efficiency is promoted by enhancing soil moisture content (MC). However, the effects of MC on soil microbial ecological functions during bioremediation remain unclear. Here, we investigated the impacts of 5% and 15% of moisture contents on petroleum degradation, soil microbial structures and functions, and the related genes using high-throughput sequencing and gene function prediction. Results indicated that petroleum biodegradation efficiency was increased by 8.06% in the soils with 15% MC when compared to that with 5% of MC. The complexity and stability of soil microbial community structures with 15% MC were higher than those in the soils with 5% MC when hydrocarbon-degrading bacterial flora (HDBF) were inoculated into the soils. Fifteen percent of moisture content strengthened the interaction of the bacterial community network and reduced the loss of some key bacteria species including Mycobacterium, Sphingomonas, and Gemmatimonas. Some downregulated gene pathways relating to bioaugmentation were enhanced in the soils with 15% MC. The results suggested that the dynamic balances of microbial communities and the metabolic interactions by 15% MC treatment are the driving forces for the enhancement of bioremediation in petroleum-contaminated soil.
Collapse
Affiliation(s)
- Huan Gao
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Manli Wu
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Heng Liu
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yawen Ou
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Ting Zhang
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xuhong Duan
- Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
5
|
Durand M, Touchette D, Chen YJ, Magnuson E, Wasserscheid J, Greer CW, Whyte LG, Altshuler I. Effects of marine diesel on microbial diversity and activity in high Arctic beach sediments. MARINE POLLUTION BULLETIN 2023; 194:115226. [PMID: 37442053 DOI: 10.1016/j.marpolbul.2023.115226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Global warming induced sea ice loss increases Arctic maritime traffic, enhancing the risk of ecosystem contamination from fuel spills and nutrient loading. The impact of marine diesel on bacterial metabolic activity and diversity, assessed by colorimetric assay, 16S rRNA and metagenomic sequencing, of Northwest Passage (Arctic Ocean) beach sediments was assessed with nutrient amendment at environmentally relevant temperatures (5 and 15 °C). Higher temperature and nutrients stimulated microbial activity, while diesel reduced it, with metabolism inhibited at and above 0.01 % (without nutrients) and at 1 % (with nutrients) diesel inclusions. Diesel exposure significantly decreased microbial diversity and selected for Psychrobacter genus. Microbial hydrocarbon degradation, organic compound metabolism, and exopolysaccharide production gene abundances increased under higher diesel concentrations. Metagenomic binning recovered nine MAGs/bins with hydrocarbon degradation genes. We demonstrate a nutrients' rescue-type effect in diesel contaminated microbial communities via enrichment of microorganisms with stress response, aromatic compound, and ammonia assimilation metabolisms.
Collapse
Affiliation(s)
- Margaux Durand
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada; Université Paris-Saclay, INRAE, AgroParisTech, Paris-Saclay Applied Economics, 91120 Palaiseau, France
| | - David Touchette
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ya-Jou Chen
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Elisse Magnuson
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Jessica Wasserscheid
- Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada
| | - Charles W Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada
| | - Ianina Altshuler
- Natural Resource Sciences, McGill University, 21111 Lakeshore, Ste Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada (NRC), Montreal, Quebec, Canada; MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Ling H, Hou J, Du M, Zhang Y, Liu W, Christie P, Luo Y. Surfactant-enhanced bioremediation of petroleum-contaminated soil and microbial community response: A field study. CHEMOSPHERE 2023; 322:138225. [PMID: 36828103 DOI: 10.1016/j.chemosphere.2023.138225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Surfactant-enhanced bioremediation (SEBR) is frequently employed to clean up soil polluted with petroleum hydrocarbons, but few studies have focused on how surfactants affect microbial communities and different fractions of petroleum hydrocarbons, particularly in the field. Here, the surfactants sodium dodecyl benzene sulfonate (SDBS), alpha olefin sulfonate (AOS), Triton X-100 (TX-100), Tween80, and rhamnolipid were combined with the oil-degrading bacterium Pseudomonas sp. SB to remediate oil-contaminated soil in the laboratory. AOS gave the highest removal efficiency (65.1%) of total petroleum hydrocarbons (TPHs). Therefore, AOS was used in a field experiment with Pseudomonas sp. SB and the removal efficiency of TPHs and long-chain hydrocarbons C21-C40 reached 57.4 and 53.0%, respectively, significantly higher than the other treatments. During bioremediation the addition of Pseudomonas sp. SB significantly stimulated the growth of bacterial genera such as Alcanivorax, Luteimonas, Parvibaculum, Stenotrophomonas, and Pseudomonas and AOS further stimulated the growth of Sphingobacterium, Pseudomonas and Alcanivorax. This study validates the feasibility of surfactant-enhanced bioremediation in the field and partly reveals the mechanism of surfactant-enhanced bioremediation from the perspective of changes in different fractions of petroleum and microbial community dynamics.
Collapse
Affiliation(s)
- Hao Ling
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mingjun Du
- China Petroleum Engineering and Construction Corporation North Company, Renqiu, 062552, China
| | - Yun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
7
|
Su Q, Yu J, Fang K, Dong P, Li Z, Zhang W, Liu M, Xiang L, Cai J. Microbial Removal of Petroleum Hydrocarbons from Contaminated Soil under Arsenic Stress. TOXICS 2023; 11:toxics11020143. [PMID: 36851017 PMCID: PMC9962243 DOI: 10.3390/toxics11020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The contamination of soils with petroleum and its derivatives is a longstanding, widespread, and worsening environmental issue. However, efforts to remediate petroleum hydrocarbon-polluted soils often neglect or overlook the interference of heavy metals that often co-contaminate these soils and occur in petroleum itself. Here, we identified Acinetobacter baumannii strain JYZ-03 according to its Gram staining, oxidase reaction, biochemical tests, and FAME and 16S rDNA gene sequence analyses and determined that it has the ability to degrade petroleum hydrocarbons. It was isolated from soil contaminated by both heavy metals and petroleum hydrocarbons. Strain JYZ-03 utilized diesel oil, long-chain n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) as its sole carbon sources. It degraded 93.29% of the diesel oil burden in 7 days. It also had a high tolerance to heavy metal stress caused by arsenic (As). Its petroleum hydrocarbon degradation efficiency remained constant over the 0-300 mg/L As(V) range. Its optimal growth conditions were pH 7.0 and 25-30 °C, respectively, and its growth was not inhibited even by 3.0% (w/v) NaCl. Strain JYZ-03 effectively bioremediates petroleum hydrocarbon-contaminated soil in the presence of As stress. Therefore, strain JYZ-03 may be of high value in petroleum- and heavy-metal-contaminated site bioremediation.
Collapse
Affiliation(s)
- Qu Su
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Jiang Yu
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Institute of Advanced Studies, China University of Geosciences, Wuhan 430079, China
| | - Kaiqin Fang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Panyue Dong
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Zheyong Li
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wuzhu Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Manxia Liu
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Junxiong Cai
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| |
Collapse
|
8
|
Li JM, Yao CL, Lin WH, Surampalli RY, Zhang TC, Tseng TY, Kao CM. Toxicity determination, pollution source delineation, and microbial diversity evaluation of PAHs-contaminated sediments for an urban river. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10810. [PMID: 36433735 DOI: 10.1002/wer.10810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The Feng-Sang River is a metropolitan river in Kaohsiung City, Taiwan. In this study, Feng-Sang River sediments were analyzed to investigate the distributions and sources of polycyclic aromatic hydrocarbons (PAHs). The Sediment Quality Guidelines (SQGs), potentially carcinogenic PAHs (TEQcarc), and toxic equivalence quotient (TEQ) were applied to evaluate influences of PAHs on ecosystems and microbial diversities. Results indicate that PAHs concentrations varied between seasons and locations. The concentrations of ∑16PAHs ranged from 73.6 to 603.8 ng/kg in dry seasons and from 2.3 to 199.3 ng/kg in wet seasons. This could be because of the flushing effect during wet seasons, which caused the movement and dilution of the PAH-contaminated sediments. Diagnostic ratio analysis infers that high PAHs levels were generated by combustion processes and vehicle traffic, and results from multivariate descriptive statistical analysis also demonstrate that the vehicular traffic pollution could be the major emission source of PAHs contamination. Comparisons of PAHs with SQGs indicate that PAHs concentrations in sediment were below the effects range low (ERL) values, and thus, the immediate threat to organisms might not be significant. The diagnostic ratio analyses are effective methods for PAH source appointment. The metagenomic assay results imply that sediments contained essential microbial species with eminent diversity. The detected PAH-degrading bacteria (Desulfatiglans, Dechloromonas, Sphingomonas, Methylobacterium, Rhodobacter, Clostridium, and Exiguobacterium) played a key role in PAHs biotransformation, and Dechloromonas and Rhodobacter had a higher relative abundance. Results of microbial diversity analyses indicate that the contaminated environment induced the changes of governing microbial groups in sediments. PRACTITIONER POINTS: Diagnostic ratio analyses are effective methods for PAHs source appointment. Microbial composition in sediments are highly affected by anthropogenic pollution. Combustion and vehicle traffic contribute to urban river sediments pollution by PAHs. Dechloromonas and Rhodobacter are dominant PAHs-degrading bacteria in sediments.
Collapse
Affiliation(s)
- Jin-Min Li
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Han Lin
- School of Environment, Tsinghua University, Beijing, China
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, USA
| | - Tsung-Yu Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Han L, Xu M, Kong X, Liu X, Wang Q, Chen G, Xu K, Nie J. Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120060. [PMID: 36058318 DOI: 10.1016/j.envpol.2022.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Boscalid is a novel, highly effective carboximide fungicide that has been substantially and irrationally applied in greenhouses. However, little is known about the residual characteristics of boscalid and its ecological effects in long-term polluted greenhouse soils. Therefore, actual boscalid pollution status in greenhouse soils was simulated by repeatedly introducing boscalid into the soil under laboratory conditions. The degradation characteristics of boscalid, and its effects on the diversity, composition, function, and co-occurrence patterns of the soil microbial community were systematically investigated. Boscalid degraded slowly, with its degradation half-lives ranging from 31.5 days to 180.1 days in the soil. Boscalid degradation was further delayed by repeated treatment and increasing its initial concentration. Boscalid significantly decreased soil microbial diversity, particularly at the recommended dosage. Amplicon sequencing analysis showed that boscalid altered the soil microbial community and further stimulated the phylum Proteobacteria and four potential boscalid-degrading bacterial genera, Sphingomonas, Starkeya, Citrobacter, and Castellaniella. Although the network analysis revealed that boscalid significantly reduced the microbial network complexity, it enhanced the vital roles of Proteobacteria by increasing its proportion and strengthening the relationships among the internal bacteria in the network. The soil microbial function in the boscalid treatment were simulated at the recommended dosage and two-fold recommended dosage but showed an inhibition-recovery-stimulation trend at the five-fold recommended dosage with an increase in treatment frequency. Moreover, the expression of nitrogen cycling functional genes, nifH, AOA amoA, AOB amoA, nirK, and nirS in all boscalid treatments displayed an inhibition-recovery-stimulation trend during the entire experimental period, and the effects were more pronounced at the five-fold recommended dosage. In conclusion, repeated boscalid treatments delayed degradation, reduced soil microbial diversity and network complexity, disturbed soil microbial community, and interfered with soil microbial function.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Min Xu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiabing Kong
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guilan Chen
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kun Xu
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
10
|
Zhang X, Liu H, Han H, Zhang B, Zhang C, He J, Li S, Cao H. Microbial Community Succession Associated with Poplar Wood Discoloration. PLANTS (BASEL, SWITZERLAND) 2022; 11:2420. [PMID: 36145822 PMCID: PMC9504049 DOI: 10.3390/plants11182420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Microbes are common inhabitants of wood, but little is known about the relationship between microbial community dynamics during wood discoloration. This study uses simulation experiments to examine the changes in the microbial communities in poplar wood at different succession stages. The composition and structure of the microbial communities changed significantly in different successional stages, with an overarching pattern of bacterial diversity decreasing and fungal diversity increasing from the early to the late successional stages. Nevertheless, succession did not affect the composition of the microbial communities at the phylum level: Proteobacteria and Acidobacteria dominated the bacterial communities, while Ascomycota and Basidiomycota dominated the fungal communities. However, at the genus level, bacterial populations of Sphingomonas and Methylobacterium, and fungal populations of Sphaeropsis were significantly more prevalent in later successional stages. Stochastic assembly processes were dominant in the early successional stages for bacteria and fungi. However, variable selection played a more critical role in the assembly processes as succession proceeded, with bacterial communities evolving towards more deterministic processes and fungal communities towards more stochastic processes. Altogether, our results suggest that bacteria and fungi exhibit different ecological strategies in poplar wood. Understanding those strategies, the resulting changes in community structures over time, and the relationship to the different stages of poplar discoloration, is vital to the biological control of that discoloration.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Bioengineering Technology Center, College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Nanjing 212499, China
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heming Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunzhi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunpeng Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
George F, Titécat M, Barois N, Daniel C, Garat A, Jan G, Foligné B. A Unique Enhancement of Propionibacterium freudenreichii's Ability to Remove Pb(II) from Aqueous Solution by Tween 80 Treatment. Int J Mol Sci 2022; 23:ijms23169207. [PMID: 36012472 PMCID: PMC9408999 DOI: 10.3390/ijms23169207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/05/2022] Open
Abstract
Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.01) following the addition of a polysorbate detergent (Tween® 80) during or either shortly after the growth of a P. freudenreichii culture. We evaluated the optimal Tween® 80 concentration for pretreatment conditions, documented the role of other detergents, and explored the possible mechanisms involved. Our results reveal a novel, environmentally friendly, low-cost pretreatment procedure for enhancing the selective removal of lead from water by probiotic-documented bacteria.
Collapse
Affiliation(s)
- Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59000 Lille, France
| | - Gwénaël Jan
- STLO, INRAE, Agrocampus Ouest, Institut Agro, Science & Technologie du Lait & de l’Œuf, F-35000 Rennes, France
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
12
|
Magdy MM, Gaber Y, Sebak M, Azmy AF, AbdelGhani S. Different metabolic pathways involved in anthracene biodegradation by Brevibacillus, Pseudomonas and Methylocystis Species. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00178-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polycyclic aromatic hydrocarbons (PAHs) such as anthracene are one of the most toxic contaminants to our environment. Microbial biodegradation of these xenobiotics is a cost-effective technological solution. The present study aimed to recover some bacterial isolates from Beni-Suef Governorate in Egypt with high capabilities of anthracene biodegradation. The selected isolates were molecularly characterized by 16S rRNA gene sequencing, the degree of anthracene biodegradation was monitored using optical density (OD) and high-performance liquid chromatography (HPLC), PCR amplification of some selected genes encoding biodegradation of PAHs was monitored, and gas chromatography–mass spectrometry (GC–MS) analysis was applied for detecting the resulted metabolites.
Result
Three bacterial isolates were studied, the 16s rRNA sequences of the isolates showed homology of the first isolate to Brevibacillus sp. (94.58 %), the second isolates showed homology to Pseudomonas sp. (94.53%) and the third isolate showed homology to Methylocystis sp. (99.61 %), all isolates showed the ability to degrade anthracene. PCR amplification of some selected genes encoding biodegradation of PAHs revealed the presence of many biodegrading genes in the selected strains. Gas chromatography-mass spectrometry (GC–MS) analysis of the metabolites resulted from anthracene biodegradation in the present study suggested that more than one biodegradation pathway was followed by the selected isolates.
Conclusions
The selected strains could represent a potential bioremediation tool in solving the PAHs problem in the Egyptian environment with a clean and cost-effective technique.
Graphical Abstract
Collapse
|
13
|
Govarthanan M, Liang Y, Kamala-Kannan S, Kim W. Eco-friendly and sustainable green nano-technologies for the mitigation of emerging environmental pollutants. CHEMOSPHERE 2022; 287:132234. [PMID: 34826925 DOI: 10.1016/j.chemosphere.2021.132234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| | - Yanna Liang
- Department of Environmental & Sustainable Engineering, College of Engineering & Applied Sciences, University at Albany, SUNY, USA
| | - Seralathan Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
14
|
Teng T, Liang J, Wu Z. Identification of pyrene degraders via DNA-SIP in oilfield soil during natural attenuation, bioaugmentation and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149485. [PMID: 34392205 DOI: 10.1016/j.scitotenv.2021.149485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene is a model contaminant of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), which are compounds that have potential carcinogenic effects and pose a serious threat to human health. Finding effective pyrene-degrading bacteria is crucial for removing PAHs from soil. In this study, DNA-based stable isotope probing (DNA-SIP) technology was used to investigate pyrene degraders in PAH-contaminated oilfield soil during natural attenuation (NA), bioaugmentation (BA) and biostimulation (BS). The results show that BA played an important role in pyrene degradation with the highest pyrene removal rate (~95%) after 12 days incubation, followed by removal rates of ~90% for NA and ~30% for BS. In addition, 6 novel pyrene degraders were identified, while 12 well-known PAH degraders were demonstrated to participate in the biodegradation of pyrene. Additionally, the external homologous strains introduced during BA promoted the degradation of pyrene, but not by directly participating in the metabolism of the target compound. Rhamnolipid supplementation during BS promoted the involvement of more microorganisms in the degradation of pyrene, which was beneficial to identifying more pyrene degraders via DNA-SIP. These findings provide new insight into the effects of external homologous strains and supplementary rhamnolipids on pyrene degradation.
Collapse
Affiliation(s)
- Tingting Teng
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Li F, Li M, Zhu Q, Mao T, Dai M, Ye W, Bian D, Su W, Feng P, Ren Y, Sun H, Wei J, Li B. Imbalance of intestinal microbial homeostasis caused by acetamiprid is detrimental to resistance to pathogenic bacteria in Bombyx mori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117866. [PMID: 34343750 DOI: 10.1016/j.envpol.2021.117866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The neonicotinoid insecticide acetamiprid is widely applied for pest control in agriculture production, and its exposure often results in adverse effects on a non-target insect, Bombyx mori. However, only few studies have investigated the effects of exposure to sublethal doses of neonicotinoid insecticides on gut microbiota and susceptibility to pathogenic bacteria. In this study, we aimed to explore the possible mechanisms underlying the acetamiprid-induced compositional changes in gut microbiota of silkworm and reduced host resistance against detrimental microbes. This study indicated that sublethal dose of acetamiprid activated the dual oxidase-reactive oxygen species (Duox-ROS) system and induced ROS accumulation, leading to dysregulation of intestinal immune signaling pathways. The evenness and structure of bacterial community were altered. Moreover, after 96 h of exposure to sublethal dose of acetamiprid, several bacteria, such as Pseudomonas sp (Biotype A, DOP-1a, XW34) and Staphylococcus sp (RCB1054, RCB314, X302), invaded the silkworm hemolymph. The survival rate and bodyweight of the acetamiprid treated silkworm larvae inoculated with Enterobacter cloacae (E. cloacae) were significantly lower than the acetamiprid treatment group, suggesting that acetamiprid reduced silkworm resistance against pathogens. These findings indicated that acetamiprid disturbed gut microbial homeostasis of Bombyx mori, resulting in changes in gut microbial community and susceptibility to detrimental microbes.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Wujie Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
16
|
Zhou Z, Wang Y, Wang M, Zhou Z. Co-metabolic Effect of Glucose on Methane Production and Phenanthrene Removal in an Enriched Phenanthrene-Degrading Consortium Under Methanogenesis. Front Microbiol 2021; 12:749967. [PMID: 34712215 PMCID: PMC8546250 DOI: 10.3389/fmicb.2021.749967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion is used to treat diverse waste classes, and polycyclic aromatic hydrocarbons (PAHs) are a class of refractory compounds that common in wastes treated using anaerobic digestion. In this study, a microbial consortium with the ability to degrade phenanthrene under methanogenesis was enriched from paddy soil to investigate the cometabolic effect of glucose on methane (CH4) production and phenanthrene (a representative PAH) degradation under methanogenic conditions. The addition of glucose enhanced the CH4 production rate (from 0.37 to 2.25mg⋅L-1⋅d-1) but had no influence on the degradation rate of phenanthrene. Moreover, glucose addition significantly decreased the microbial α-diversity (from 2.59 to 1.30) of the enriched consortium but showed no significant effect on the microbial community (R 2=0.39, p=0.10), archaeal community (R 2=0.48, p=0.10), or functional profile (R 2=0.48, p=0.10). The relative abundance of genes involved in the degradation of aromatic compounds showed a decreasing tendency with the addition of glucose, whereas that of genes related to CH4 synthesis was not affected. Additionally, the abundance of genes related to the acetate pathway was the highest among the four types of CH4 synthesis pathways detected in the enriched consortium, which averagely accounted for 48.24% of the total CH4 synthesis pathway, indicating that the acetate pathway is dominant in this phenanthrene-degrading system during methanogenesis. Our results reveal that achieving an ideal effect is diffcult via co-metabolism in a single-stage digestion system of PAH under methanogenesis; thus, other anaerobic systems with higher PAH removal efficiency should be combined with methanogenic digestion, assembling a multistage pattern to enhance the PAH removal rate and CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Ziyan Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yanqin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mingxia Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhifeng Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
17
|
He A, Zhang Z, Yu Q, Yang K, Sheng GD. Lindane degradation in wet-dry cycling soil as affected by aging and microbial toxicity of biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112374. [PMID: 34049226 DOI: 10.1016/j.ecoenv.2021.112374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
This study determined the degradation of lindane in soil amended with biochar to evaluate the effects of biochar aging and microbial toxicity. Two biochars were prepared at 400 and 600 °C (BC400 and BC600) and subjected to acid washing to remove nutrition (WBC400 and WBC600). After 89 days of incubation under the alternate "wet-dry" conditions, scanning electron microscopy showed that acid washing rendered biochars especially susceptible to aging with structural collapse and fragmentation, with less surface covering. Aging impeded the release of toxic substances in BC400 and BC600 with reduced toxicity to degrading microorganisms. Lindane degradation was somewhat stimulated by biochar nutrition but mainly inhibited by adsorption. Acid washing facilitated the release of toxic substances and additionally reduced lindane degradation. The variations in fatty acid saturation degree (SFA/UFA) in soils confirmed the microbial toxicity of 5% WBC400 > 5% BC400 > 5% BC600 > 5% WBC600. High-throughput DNA sequencing showed that biochar delayed the formation of dominant degrading microbial communities in soil. Lindane degradation was completed by joint Sphingomonas, Flaviolibacter, Parasegetibacter, Azoarcus, Bacillus and Anaerolinaea. These findings are helpful for better understanding the effect of biochar in soil on long-term degradation of persistent organic pollutants.
Collapse
Affiliation(s)
- Anfei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zilan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qi Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kan Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - G Daniel Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| |
Collapse
|