1
|
Lu X, Wang Y, Liu Y, Xue X, Fu C, Xiong L, Peng L, Yang S, Ma R. Electromagnetic field coupled vertical flow constructed wetlands for rural sewage treatment: Performance, microbial community characteristics and metabolic pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123596. [PMID: 39662442 DOI: 10.1016/j.jenvman.2024.123596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Rural sewage management has been a long and difficult task. To overcome this problem, there is an urgent need for efficient, low-maintenance, low-consumption treatment technologies. In this study, an electromagnetic field coupled vertical flow constructed wetland (EMC-VFCW) and a vertical flow constructed wetland (VFCW) were constructed, and the removal performance, microbial changes, and metabolic pathways of both were investigated. The results demonstrated that the EMC-VFCW system achieved removal rates of 88.68% for COD, 92.89% for TP, 83.39% for NH4+-N, and 94.60% for NO3--N. SEM analysis revealed that the lysis of the filler surface in the EMC-VFCW system was rougher and had an increased number of active sites, which provided conditions for microbial attachment. High-throughput sequencing revealed that the EMC-VFCW system was enriched with a greater abundance of microorganisms, including Proteobacteria, Betaproteobacteria, and Acinetobacter, indicating that the presence of the electromagnetic field increased the amount of bacteria associated with phosphate removal and denitrogenation. A KEGG analysis suggested that during decontamination, the electromagnetic field might have released signal molecules that promoted energy metabolism, stimulated membrane transport, and accelerated nitrogen metabolism in the EMC-VFCW system. Additionally, the presence of the electromagnetic field altered nitrogen metabolism pathways and increased the relative abundance of denitrification-related genes (nirB, nirS, nirK). Moreover, the electromagnetic field improved the relationships among microorganisms, nitrogen metabolism functional genes, and pollutant removal in the EMC-VFCW system. Therefore, this study offers valuable insights into the performance and mechanisms of rural sewage disposal.
Collapse
Affiliation(s)
- Xiuxiu Lu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China; Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous & Rural Areas of Yunnan Province, Kunming, Yunnan, 650224, PR China
| | - Yan Wang
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China; Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous & Rural Areas of Yunnan Province, Kunming, Yunnan, 650224, PR China.
| | - Yungen Liu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China; Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous & Rural Areas of Yunnan Province, Kunming, Yunnan, 650224, PR China
| | - Xin Xue
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Chuandong Fu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Liechao Xiong
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Liping Peng
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Silin Yang
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Rong Ma
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| |
Collapse
|
2
|
Zhang S, Liu Q, Zhong L, Jiang J, Luo X, Hu X, Liu Q, Lu Y. Geobacter sulfurreducens promoted the biosynthesis of reduced graphene oxide and coupled it for nitrobenzene reduction. J Environ Sci (China) 2024; 138:458-469. [PMID: 38135411 DOI: 10.1016/j.jes.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 12/24/2023]
Abstract
In order to explore an efficient and green method to deal with nitrobenzene (NB) pollutant, reduced graphene oxide (rGO) as an electron shuttle was applied to enhance the extracellular electron transfer (EET) process of Geobacter sulfurreducens, which was a typical electrochemically active bacteria (EAB). In this study, rGO biosynthesis was achieved via the reduction of graphene oxide (GO) by G. sulfurreducens PCA within 3 days. Also, the rGO-PCA combining system completely reduced 50-200 µmol/L of NB to aniline as end product within one day. SEM characterization revealed that PCA cells were partly wrapped by rGO, and therefore the distance of electron transfer between strain PCA and rGO material was reduced. Beside, the ID/IG of GO, rGO, and rGO-PCA combining system were 0.990, 1.293 and 1.31, respectively. Moreover, highest currents were observed in rGO-PCA-NB as 12.950 µA/-12.560 µA at -408 mV/156 mV, attributing to the faster electron transfer efficiency in EET process. Therefore, the NB reduction was mainly due to: (I) direct EET process from G. sulfurreducens PCA to NB; (II) rGO served as electron shuttle and accelerated electron transfer to NB, which was the main degradation pathway. Overall, the biosynthesis of rGO via GO reduction by Geobacter promoted the NB removal process, which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.
Collapse
Affiliation(s)
- Shoujuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jianhong Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China; Hunan Engineering Research Center for Water Treatment Process & Equipment, Changsha 410007, China
| | - Xiaozhe Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xingxin Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Shenzhen Research Institute, Hunan University, Shenzhen 510082, China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
3
|
Li Y, Ma H, Li Q, Yan G, Guo S. One-step synthesis of Pt-Nd co-doped Ti/SnO 2-Sb nanosphere electrodes used to degrade nitrobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4528-4538. [PMID: 38102431 DOI: 10.1007/s11356-023-31406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Ti/SnO2-Sb electrodes possess high catalytic activity and efficiently degrade nitrobenzene (NB); however, their low service life limits their wide application. In this study, we used one-step hydrothermal synthesis to successfully prepare Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the surface morphology, microstructure, and chemical composition of the electrodes, respectively. The electrochemical activity and stability of the electrodes were characterized via linear sweep and cyclic voltammetry, electrochemical impedance spectroscopy, and an accelerated service life test; their performance for NB degradation was also studied. An appropriate amount of Pt-Nd co-doping refined the average grain size of SnO2 and formed a uniform and compact coating on the electrode surface. The oxygen evolution potential, total voltammetric charge, and electron transfer resistance of the Ti/SnO2-Sb-Nd-Pt electrodes were 1.88 V, 3.77 mC/cm2, and 11.50 Ω, respectively. Hydroxy radical was the main active radical species during the electrolytic degradation of nitrobenzene with Ti/SnO2-Sb-Nd-Pt. After Pt-Nd co-doping, the accelerated service life of the electrodes was extended from 8.0 min to 78.2 h (500 mA/cm2); although the NB degradation rate decreased from 94.1 to 80.6%, the total amount of theoretical catalytic degradation of NB in the effective working time increased from 17.4 to 8754.1 mg/cm2. These findings reveal good application potential for the electrodes and provide a reference for developing efficient and stable electrode materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Hairun Ma
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qianwei Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Guangxu Yan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
4
|
Zhang L, Song R, Jia Y, Zou Z, Chen Y, Wang Q. Purification of Quinoline Insolubles in Heavy Coal Tar and Preparation of Meso-Carbon Microbeads by Catalytic Polycondensation. MATERIALS (BASEL, SWITZERLAND) 2023; 17:143. [PMID: 38203998 PMCID: PMC10780107 DOI: 10.3390/ma17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
The quinoline-insoluble (QI) matter in coal tar and coal tar pitch is an important factor affecting the properties of subsequent carbon materials. In this paper, catalytic polycondensation was used to remove QI from heavy coal tar, and meso-carbon microbeads could be formed during the purification process. The results showed that AlCl3 had superior catalytic performance to CuCl2, and the content of QI and heavy components, including pitch, in the coal tar was lower after AlCl3 catalytic polycondensation. Under the condition of catalytic polycondensation (AlCl3 0.9 g, temperature 200 °C, and time 9 h), AlCl3 could reduce the QI content in heavy coal tar. The formed small particles could be filtered and removed, and good carbon materials could be obtained under the condition of catalytic polycondensation (AlCl3 0.9 g, temperature 260 °C, and time 3 h).
Collapse
Affiliation(s)
- Lei Zhang
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
| | - Ruikang Song
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| | - Yang Jia
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China;
| | - Zhuorui Zou
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| | - Ya Chen
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| | - Qi Wang
- School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (R.S.); (Z.Z.); (Y.C.); (Q.W.)
| |
Collapse
|
5
|
Shi Q, Yuan Y, Zhou Y, Yuan Y, Liu L, Liu X, Li F, Leng C, Wang H. Pharmaceutical and personal care products (PPCPs) degradation and microbial characteristics of low-temperature operation combined with constructed wetlands. CHEMOSPHERE 2023; 341:140039. [PMID: 37660803 DOI: 10.1016/j.chemosphere.2023.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Emerging contaminants (ECs), which are present in water bodies, could cause global environmental and human health problems. These contaminants originate from various sources such as hospitals, clinics, households, and industries. Additionally, they can also indirectly enter the water supply through runoff from agriculture and leachate from landfills. ECs, specifically Pharmaceutical and personal care products (PPCPs), are causing widespread concern due to their contribution to persistent water pollution. Traditional approaches often involve expensive chemicals and energy or result in the creation of by-products. This study developed a practical and environmentally-friendly method for removing PPCPs, which involved combining and integrating various techniques. To implement this method, it was necessary to establish and used a field simulator based on the real-life scenario. Based on the data analysis, the average removal rates of COD, TP, TN, and NH4+-N were 57%, 59%, 63%, and 73%, respectively. the removal rate of PPCPs by CCWs was found to be 82.7% after comparing samples that were not treated by constructed wetlands and those that were treated. Combined constructed wetlands (CCWs) were found to effectively remove PPCPs from water. This is due to the combined action of plant absorption, absorption, and biodegradation by microorganisms living in the wetlands. Interestingly, the wetland plant reed had been shown to play an important role in removing these pollutants. Microbial degradation was the most important pathway for PPCPs removal in CCWs. Carbamazepine was selected as a typical PPCP for analysis. In addition, the microbial community structure of the composite filler was also investigated. High-throughput sequencing confirmed that the dominant bacteria had good adaptability to PPCPs. This technique not only reduced the potential environmental impact but also served as a foundation for further research on the use of constructed wetlands for the treatment of PPCPs contaminated water bodies and its large-scale implementation.
Collapse
Affiliation(s)
- Qiushi Shi
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yonggang Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yunlong Zhou
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yue Yuan
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Lin Liu
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Xuejing Liu
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Fuping Li
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Chunpeng Leng
- Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, North China University of Science and Technology, Tangshan, PR China; College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Hebei Mining Area Ecological Restoration Industry Technology Research Institute, Tangshan, 063000, PR China; College of Mining Engineering, North China University of Science and Technology, Tangshan, PR China.
| |
Collapse
|
6
|
Wang G, Qiu G, Wei J, Guo Z, Wang W, Liu X, Song Y. Activated carbon enhanced traditional activated sludge process for chemical explosion accident wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 225:115595. [PMID: 36863655 DOI: 10.1016/j.envres.2023.115595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
With the development of industries, explosion accidents occur frequently during production, transportation, usage and storage of hazard chemicals. It remained challenging to efficiently treat the resultant wastewater. As an enhancement of traditional process, the activated carbon-activated sludge (AC-AS) process has a promising potential in treating wastewater with high concentrations of toxic compounds, chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), etc. In this paper, activated carbon (AC), activated sludge (AS) and AC-AS were used to treat the wastewater produced from an explosion accident in the Xiangshui Chemical Industrial Park. The removal efficiency was assessed by the removal performances of COD, dissolved organic carbon (DOC), NH4+-N, aniline and nitrobenzene. Increased removal efficiency and shortened treatment time were achieved in the AC-AS system. To achieve the same COD, DOC and aniline removal (90%), the AC-AS system saved 30, 38 and 58 h compared with the AS system, respectively. The enhancement mechanism of AC on the AS was explored by metagenomic analysis and three-dimensional excitation-emission-matrix spectra (3DEEMs). More organics, especially aromatic substances were removed in the AC-AS system. These results showed that the addition of AC promoted the microbial activity in pollutant degradation. Bacteria, such as Pyrinomonas, Acidobacteria and Nitrospira and genes, such as hao, pmoA-amoA, pmoB-amoB and pmoC-amoC, were found in the AC-AS reactor, which might have played important roles in the degradation of pollutants. To sum up, AC might have enhanced the growth of aerobic bacteria which further improved the removal efficiency via the combined effects of adsorption and biodegradation. The successful treatment of Xiangshui accident wastewater using the AC-AS demonstrated the potential universal characteristics of the process for the treatment of wastewater with high concentration of organic matter and toxicity. This study is expected to provide reference and guidance for the treatment of similar accident wastewaters.
Collapse
Affiliation(s)
- Guanying Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
7
|
He K, Sun R, Yang D, Wang S, Shu J, Wan W, Pan Y, Qin F, He F, Liang L. Effect of sulfidation on nitrobenzene removal from groundwater by microscale zero-valent iron: Insights into reactivity, reaction sites and removal pathways. CHEMOSPHERE 2023; 310:136819. [PMID: 36241117 DOI: 10.1016/j.chemosphere.2022.136819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
While it has been recognized that sulfidation can effectively improve the reactivity of microscale zero valent iron (mZVI), there is limited understanding of nitrobenzene (ArNO2) removal by sulfidated mZVI. To understand the reduction capacity and pathway of ArNO2 by sulfidated mZVI, ball-milling sulfidated mZVI (S-mZVIbm) with different S/Fe molar ratios (0-0.2) was used to conduct this experiment. The results showed that sulfidation could efficiently enhance ArNO2 removal under iron-limited and iron excess conditions, which was attributed to the presence of FeSx sites that could provide higher Fe(0) utilization efficiency and stronger passivation resisting for S-mZVIbm. The optimum ArNO2 reduction could be obtained by S-mZVIbm with S/Fe molar ratio at 0.1, which could completely transform ArNO2 to aniline (ArNH2) with a rate constant of 4.36 × 10-2 min-1 during 120-min reaction. FeSx phase could act as electron transfer sites for ArNO2 reduction and it could still be reserved in S-mZVIbm after reduction reaction. The product distribution indicated that sulfidation did not change the types of reduction products, while the removal of ArNO2 by S-mZVIbm was a step-by-step reduction progress along with the adsorption of ArNH2. In addition, a faster reduction of ArNO2 in groundwater/soil system further demonstrated the feasibility of S-mZVIbm in the real field remediation.
Collapse
Affiliation(s)
- Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rui Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dezhi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuchen Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Shu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wubo Wan
- Marine Food Engineering Technology Research Center of Hainan, Province, Hainan Tropical Ocean University, No.1 Yucai Road, Sanya, 572022, China
| | - Ying Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengyang Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
8
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Niu Y, Yin Y, Xu R, Yang Z, Wang J, Xu D, Yuan Y, Han J, Wang H. Electrocatalytic oxidation of low concentration cefotaxime sodium wastewater using Ti/SnO 2-RuO 2 electrode: Feasibility analysis and degradation mechanism. CHEMOSPHERE 2022; 297:134146. [PMID: 35231478 DOI: 10.1016/j.chemosphere.2022.134146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this research, Ti/SnO2-RuO2 stable anode was successfully prepared by thermal decomposition method, and low concentration cefotaxime sodium (CFX) was degraded by green and sustainable electrocatalytic oxidation technology. The electrocatalytic activity and stability of the Ti/SnO2-RuO2 coating electrode were studied according to the polarization curve of oxygen and chlorine evolution. The effects of current density, initial concentration, pH, electrolyte concentration, and other technological parameters on the degradation efficiency were discussed. Orthogonal experiment results indicated that when the current density was 25 mA cm-2, concentration of electrolyte was 5 mM and the pH value was 7, the best CFX removal rate of 86.33% could be obtained. The degradation efficiency of electrocatalytic oxidation was discussed through electrochemical analysis. Fourier transform infrared spectroscopy was used to analyze the different inlet and outlet stages before and after the degradation of CFX, and the possible degradation process was discussed. Therefore, the electrocatalytic oxidation of Ti/SnO2-RuO2 electrode was a clean and efficient technology, which could be widely used in the treatment of CFX wastewater.
Collapse
Affiliation(s)
- Yunxia Niu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Yue Yin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; North China University of Science and Technology Affiliated Hospital, Tangshan, PR China
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Zhinian Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Jia Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Yue Yuan
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; Key Laboratory of Bioelectrochemical Water Pollution Control Technology in Tangshan City, Tangshan, PR China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an, PR China.
| |
Collapse
|
10
|
Liu X, Wu H, Qin Y, Lu Q, Chen L, Sun Y. Effects of Nitrobenzene's mass transfer at water-air interface. ENVIRONMENTAL TECHNOLOGY 2022:1-9. [PMID: 35249448 DOI: 10.1080/09593330.2022.2050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a volatile organic compound, nitrobenzene has high vapor pressure and low boiling point, and it is very volatile when it enters the water body and enters the air. The mass transfer of VOCs at the water-air interface is a complex process of transboundary transport. In this paper, the effects of water temperature, interface turbulence, surfactant concentration, and humic acid concentration on the volatilization of nitrobenzene at the water-air interface were investigated. Under the influence of temperature, the volatilization of nitrobenzene accorded with the first-order kinetic equation. When the temperature increased from 5 ℃ to 25 ℃, the volatilization rate of nitrobenzene increased by 2.03 times. Temperature for volatilization rate constant was in accordance with the Arrhenius equation. The water-gas distribution of volatile organic compounds was in accordance with the Boltzman equation. Under the same temperature conditions, when the agitating intensity increased from 0 r/min to 250 r/min, the volatilization rate constant of nitrobenzene increased by 1.51 times. When the surfactant is greater than the critical micelle concentration, the volatilization rate constant of nitrobenzene decreases with the increase of surfactant. When the concentration of humic acid increased from 100 mg/L to 500 mg/L, the half-life increased by 1.14 h, and the volatilization rate decreased by 1.14 h, reduced by 17%. The results showed that the increase of temperature and the intensification of stirring had a significant promoting effect on the volatilization of nitrobenzene, while the surfactant and humic acid both played an inhibitory effect on the volatilization of nitrobenzene.
Collapse
Affiliation(s)
- Xuewei Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Huifang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Qin
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qimiao Lu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Liping Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yi Sun
- Architects & Engineers Co.,Ltd of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Lei Z, Wei K, Yang J, Zhang L, Lu X, Fang B. Ultrasonication-Assisted Preparation of a Mn-Based Blast Furnace Slag Catalyst: Effects on the Low-Temperature Selective Catalytic Reduction Denitration Process. ACS OMEGA 2021; 6:23059-23066. [PMID: 34549106 PMCID: PMC8444199 DOI: 10.1021/acsomega.1c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Reducing costs and improving performance have always been hotspots in the field of catalyst research. In order to control the NO x in the low-temperature flue gas of nonpower industries, this paper studies the denitration performance of the ultrasonication-assisted preparation of Mn-based blast furnace slag selective catalytic reduction (SCR) low-temperature denitration catalysts. The catalyst was characterized by FT-IR, XRD, and SEM. The study found that ultrasound assistance can make the active components on the catalyst surface more uniformly dispersed and improve the catalytic activity of the catalyst. Under conditions of 80 W ultrasonic power and 20 min ultrasonic time, the denitration performance of the Mn-based blast furnace slag catalyst is optimal, and the NO removal rate is 2.5 times that of the unsonicated catalyst. This work clarified the mechanism of the effect of ultrasonic assistance on the Mn-based blast furnace slag catalyst and at the same time realized the utilization of solid waste resources and air pollution control.
Collapse
Affiliation(s)
- Zhang Lei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
| | - Kuang Wei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Jia Yang
- School
of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Zhang
- China
National Heavy Machinery Research Institute Co, Lto, Xi’an 710032, China
| | - Xi Lu
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Bai Fang
- CAS
Key Laboratory of Green Process and Engineering, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Lei Z, Xi L, Lingbo Q, Hao S, Yang J, Zhang L, Yao Y, Fang B. Application of a blast furnace slag carrier catalyst in flue gas denitration and sulfur resistance. RSC Adv 2021; 11:15036-15043. [PMID: 35424048 PMCID: PMC8698001 DOI: 10.1039/d1ra00752a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
It is an urgent need to develop a new catalyst with high efficiency and low cost. In the present study, we successfully prepared bimetallic-supported denitration catalysts using the blast furnace slag as the main material and calcium bentonite as the binder. The as-prepared catalyst was characterized via X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Besides, the mechanism of denitration was further determined with the help of the denitration and sulfur resistance of the catalyst. The results indicated that when the Mn load was 5%, and the second metal reactive component was loaded at 3%, Mn-Cu/GGBS (catalyst prepared by loading Mn and Cu on the blast furnace slag) had the best effects on low temperature denitration. Moreover, the conversion rate of NO was up to 97%, and it possessed the capability of specific sulfur resistance; when the third metal reactive component, Ce, was introduced with 1% load, the sulfur resistance of the Mn-Cu-Ce/GGBS (catalyst prepared by loading Mn, Cu, and Ce on the blast furnace slag) catalyst was further improved compared with that of the Mn-Cu/GGBS catalyst.
Collapse
Affiliation(s)
- Zhang Lei
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources Xi'an 710021 China
| | - Lu Xi
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
| | - Qi Lingbo
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
| | - Shu Hao
- Xi'an University of Technology Xi'an 710048 China
| | - Jia Yang
- Xi'an University of Technology Xi'an 710048 China
| | - Lei Zhang
- China National Heavy Machinery Research Institute Co, Ltd Xi'an 710032 China
| | - Yan Yao
- Xi'an University of Science and Technology Xi'an 710054 China +8618502993567
| | - Bai Fang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|