1
|
Zhang Y, Yang L, Zhou M, Mou Y, Wang D, Zhang P. Insights into microscopic fabrication, macroscopic forms and biomedical applications of alginate composite gel containing metal-organic frameworks. Asian J Pharm Sci 2024; 19:100952. [PMID: 39640058 PMCID: PMC11617950 DOI: 10.1016/j.ajps.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 08/18/2024] [Indexed: 12/07/2024] Open
Abstract
Overcoming the poor physicochemical properties of pure alginate gel and the inherent shortcomings of pure metal-organic framework (MOF), alginate/MOF composite gel has captured the interest of many researchers as a tunable platform with high stability, controllable pore structure, and enhanced biological activity. Interestingly, different from the traditional organic or inorganic nanofillers physically trapped or chemically linked within neTtworks, MOFs crystals can not only be dispersed by crosslinking polymerization, but also support self-assembly in-situ under the help of chelating cations with alginate. The latter is influenced by multiple factors and may involve some complex mechanisms of action, which is also a topic discussed deeply in this article while summarizing different preparation routes. Furthermore, various physical and chemical levels of improvement strategies and available macroforms are summarized oriented towards obtaining composite gel with ideal performance. Finally, the application status of this composite system in drug delivery, wound healing and other biomedical fields is further discussed. And the current limitations and future development directions are shed light simultaneously, which may provide guidance for the vigorous development of these composite systems.
Collapse
Affiliation(s)
- Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lvyao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yanhua Mou
- College of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dongmei Wang
- College of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
2
|
Dutta S, Gupta RS, Pathan S, Bose S. Interpenetrating polymer networks for desalination and water remediation: a comprehensive review of research trends and prospects. RSC Adv 2023; 13:6087-6107. [PMID: 36814875 PMCID: PMC9939980 DOI: 10.1039/d2ra07843k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/22/2023] [Indexed: 02/22/2023] Open
Abstract
Interpenetrating polymer network (IPN) architectures have gained a lot of interest in recent decades, mainly due to their wide range of applications including water treatment and environmental remediation. IPNs are composed of two or more crosslinked polymeric matrices that are physically entangled but not chemically connected. In polymer science, the interpenetrating network structure with its high polymer chain entanglement is commonly used to generate materials with many functional properties, such as mechanical robustness and adaptable structure. In order to remove a targeted pollutant from contaminated water, it is feasible to modify the network architectures to increase the selectivity by choosing the monomer appropriately. This review aims to give a critical overview of the recent design concepts of IPNs and their applications in desalination and water treatment and their future prospects. This article also discusses the inclusion of inorganic nanoparticles into traditional polymeric membrane networks and its advantages. In the first part, the current scenario for desalination, water pollution and conventional desalination technologies along with their challenges is discussed. Subsequently, the main strategies for the synthesis of semi-IPNs and full-IPNs, and their relevant properties in water remediation are presented based on the nature of the networks and mechanism, with an emphasis on the IPN membrane. This review article has thoroughly investigated and critically assessed published works that describe the latest study on developing IPN membranes, hydrogels and composite materials in water purification and desalination. The goal of this critical analysis is to elicit fresh perspectives regarding the application and advantages of IPNs in desalination and water treatment. This article will also provide a glimpse into future areas of research to address the challenges relating to advanced water treatment as well as its emerging sustainable approaches. The study has put forward a convincing justification and establishes the relevance of IPNs being one of the most intriguing and important areas for achieving a sustainable generation of advanced materials that could benefit mankind.
Collapse
Affiliation(s)
- Soumi Dutta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Shabnam Pathan
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| |
Collapse
|
3
|
Multifunctional Photoabsorber for Highly Efficient Interfacial Solar Steam Generation and Wastewater Treatment. ChemistrySelect 2023. [DOI: 10.1002/slct.202204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Zhao H, Sun J, Du Y, Zhang M, Yang Z, Su J, Peng X, Liu X, Sun G, Cui Y. In-situ immobilization of CuMOF on sodium alginate/chitosan/cellulose nanofibril composite hydrogel for fast and highly efficient removal of Pb2+ from aqueous solutions. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Li X, Afsar NU, Chen X, Wu Y, Chen Y, Shao F, Song J, Yao S, Xia R, Qian J, Wu B, Miao J. Negatively Charged MOF-Based Composite Anion Exchange Membrane with High Cation Selectivity and Permeability. MEMBRANES 2022; 12:membranes12060601. [PMID: 35736308 PMCID: PMC9227639 DOI: 10.3390/membranes12060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022]
Abstract
Every metal and metallurgical industry is associated with the generation of wastewater, influencing the living and non-living environment, which is alarming to environmentalists. The strict regulations about the dismissal of acid and metal into the environment and the increasing emphasis on the recycling/reuse of these effluents after proper remedy have focused the research community's curiosity in developing distinctive approaches for the recovery of acid and metals from industrial wastewaters. This study reports the synthesis of UiO-66-(COOH)2 using dual ligand in water as a green solvent. Then, the prepared MOF nanoparticles were introduced into the DMAM quaternized QPPO matrix through a straightforward blending approach. Four defect-free UiO-66-(COOH)2/QPPO MMMs were prepared with four different MOF structures. The BET characterization of UiO-66-(COOH)2 nanoparticles with a highly crystalline structure and sub-nanometer pore size (~7 Å) was confirmed by XRD. Because of the introduction of MOF nanoparticles with an electrostatic interaction and pore size screening effect, a separation coefficient (SHCl/FeCl2) of 565 and UHCl of 0.0089 m·h-1 for U-C(60)/QPPO were perceived when the loading dosage of the MOF content was 10 wt%. The obtained results showed that the prepared defect-free MOF membrane has broad prospects in acid recovery applications.
Collapse
Affiliation(s)
- Xiaohuan Li
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China;
| | - Xiaopeng Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yifeng Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yu Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Feng Shao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiaxian Song
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Shuai Yao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| |
Collapse
|
6
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
ALSamman MT, Sánchez J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|