1
|
Balla D, Costopoulou D, Perkons I, Saraga D, Zacs D, Voutsa D, Leondiadis L, Maggos T. Short- and medium-chain polychlorinated alkanes in the air of Athens, Greece. CHEMOSPHERE 2025; 373:144162. [PMID: 39923610 DOI: 10.1016/j.chemosphere.2025.144162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The atmospheric occurrence and partition between the gas and particulate phase of short- (PCAs-C10-13) and medium-chain (PCAs-C14-17) polychlorinated alkanes (PCAs) were investigated during two sampling campaigns in Athens city, Greece. The concentrations of PCAs ranged between 1.46 and 43.6 ng m-3 in the gas phase, and between 5.8 and 40.3 ng m-3 in the particulate phase, which were within the reported levels in Europe. Significant seasonal variation was observed for PCAs-C10-13 and PCAs-C14-17 in the gas phase. C10Cl6-7 and C14Cl6-8 were the predominant short- and medium-chain congeners, respectively. Gas-phase PCAs exhibited significant positive correlation with temperature, and negative correlation with relative humidity. Diagnostic ratios of medium to short-chain PCAs suggested that ΣPCAs in total suspended particle (TSP) mainly originated from local sources. Furthermore, the relationship between partitioning coefficient Kp and the subcooled liquid pressure (PL°) was investigated. Moreover, Positive Matrix Factorization (PMF) analysis was employed to identify the potential ΣPCAs groups of sources. Finally, the estimated risk of inhalation exposure to ΣPCAs for adults and children was found to be low.
Collapse
Affiliation(s)
- Dimitra Balla
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece; Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Iela 3, Riga, LV-1076, Latvia.
| | - Dikaia Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Iela 3, Riga, LV-1076, Latvia.
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Thomas Maggos
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| |
Collapse
|
2
|
Zhang R, Zhang M, Wang G, Wu D, Kong Y, Deng H, Li J, Lan H, Wu M. Long-chain chlorinated paraffins (LCCPs) exposure causes senescence and inflammatory damage in cardiomyocytes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124166. [PMID: 39848178 DOI: 10.1016/j.jenvman.2025.124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Humans can be exposed to LCCPs through air and diet, leading to their accumulation in the body. Given the significance of understanding potential health risks, a thorough investigation into the detrimental health impacts of LCCPs is paramount. In this study, we conducted a series of experiments to investigate the effects of LCCPs on cardiomyocytes, employing techniques such as flow cytometry, western-blot, indirect immunofluorescence, and confocal microscopy. We initially observed that LCCPs caused senescence damage to cardiomyocytes. Under the stimulation of LCCPs, the number of SA-β-Gal positive cardiomyocytes increased, along with an elevation in the protein expression levels of cellular senescence markers (p21, p16). The cell cycle was arrested in the S phase. Subsequently, we observed that LCCPs also induced an increase in ROS and inflammatory cytokines (IL-6, IL-8, TNF-α), as well as a decrease in MMP in cardiomyocytes. Mechanistic studies revealed that LCCPs activated the innate immune response pathway-cGAS-STING pathway, and the cellular senescence damage caused by LCCPs was alleviated upon the addition of a cGAS-STING inhibitor. In conclusion, our findings suggest that LCCPs can induce aging damage in cardiomyocytes by activating the cGAS-STING signaling pathway. This study indicates that LCCPs possesses potential cardiotoxicity and offers necessary experimental data for their rational and regulated utilization.
Collapse
Affiliation(s)
- Ruoting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Meng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuebing Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Haochu Deng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiawen Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
4
|
Arriola A, Al Saify I, Warner NA, Herzke D, Harju M, Amundsen PA, Evenset A, Möckel C, Krogseth IS. Dechloranes and chlorinated paraffins in sediments and biota of two subarctic lakes. FRONTIERS IN TOXICOLOGY 2024; 6:1298231. [PMID: 38817305 PMCID: PMC11137240 DOI: 10.3389/ftox.2024.1298231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26-115.29 ng/g dw and 66.18-136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4-5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.
Collapse
Affiliation(s)
| | - Insam Al Saify
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, Netherlands
| | - Nicholas A. Warner
- Thermo Fisher Scientific, Bremen, Germany
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Dorte Herzke
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Mikael Harju
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Claudia Möckel
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ingjerd S. Krogseth
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
McGrath TJ, Saint-Vanne J, Hutinet S, Vetter W, Poma G, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Le Bizec B, Dervilly G, Covaci A, Cariou R. Detection of Bromochloro Alkanes in Indoor Dust Using a Novel CP-Seeker Data Integration Tool. Anal Chem 2024; 96:4942-4951. [PMID: 38478960 DOI: 10.1021/acs.analchem.3c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44307 Nantes, France
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, 70599, Stuttgart, Germany
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | |
Collapse
|
6
|
McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Dervilly G, Cariou R, Covaci A. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121994. [PMID: 37302785 DOI: 10.1016/j.envpol.2023.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, very short-, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs and LCCPs, respectively) were measured in 40 indoor dust samples from four countries including Japan (n = 10), Australia (n = 10), Colombia (n = 10) and Thailand (n = 10). Homologues of the chemical formula CxH(2x+2-y)Cly ranging C6-36 and Cl3-30 were analysed using liquid chromatography coupled to Orbitrap high resolution mass spectrometry (LC-Orbitrap-HRMS) and integrated using novel custom-built CP-Seeker software. CPs were detected in all dust samples with MCCPs the dominant homologue group in all countries. Overall median ∑SCCP, ∑MCCP and ∑LCCP (C18-20) concentrations determined in dust samples were 30 μg/g (range; 4.0-290 μg/g), 65 μg/g (range; 6.9-540 μg/g) and 8.6 μg/g (range; <1.0-230 μg/g), respectively. Of the quantified CP classes, overall concentrations were generally highest in the samples from Thailand and Colombia, followed by Australia and Japan. vSCCPs with C≤9 were detected in dust from each country with an overall frequency of 48%, while LCCPs (C21-36) were present in 100% of samples. Estimated daily intakes (EDIs) calculated for SCCPs and MCCPs relating to ingestion of contaminated indoor dust were considered not to represent health risks based on currently available toxicological data using the margin of exposure (MOE) approach. To the authors' knowledge, this study provides the first data on CPs in indoor dust from Japan, Colombia and Thailand, and is among the first reports of vSCCPs in indoor dust, globally. These findings indicate that further toxicological data and the availability of appropriate analytical standards are needed to evaluate the potential for negative health outcomes deriving from exposure to vSCCPs and LCCPs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Oniris, INRAE, LABERCA, 44300, Nantes, France.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
7
|
He W, Sun P, Zhao Y, Pu Q, Yang H, Hao N, Li Y. Source toxicity characteristics of short- and medium-chain chlorinated paraffin in multi-environmental media: Product source toxicity, molecular source toxicity and food chain migration control through silica methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162861. [PMID: 36931521 DOI: 10.1016/j.scitotenv.2023.162861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Short and medium-chain chlorinated paraffin (SCCP/MCCP) have been widely studied because of their extensive environmental hazards. In this study, product source toxicity, molecular source toxicity and food chain migration of SCCP and MCCP in multi-environmental media were comprehensively considered. The additive combination of SCCP and MCCP in the air, water and soil environment was adjusted, and PVC, PU and rubber products with the lowest source toxicity were screened. The source toxicity of SCCP and MCCP in the water environment was inhibited by design of the feed additive addition scheme (highest inhibition was 16.29 %), and the source toxicity of SCCP and MCCP in the soil environment was affected by different field management measures (highest inhibition was 38.22 %). A forage fertilizer addition plan, a cattle feed addition plan and a special population healthy complementary food regulation plan were developed to prevent the migration step by step and absorption of SCCP and MCCP in the terrestrial food chain. In addition, by means of density functional theory and analysis of key amino acid residues, the mechanism of toxicity difference between SCCP and MCCP was analyzed from the level of chemical interaction, and rationality of the inhibition scheme designed in this study was verified.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
8
|
Yu H, Gao Y, Zhan F, Zhang H, Chen J. Release Mechanism of Short- and Medium-Chain Chlorinated Paraffins from PVC Materials under Thermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3095-3103. [PMID: 36799869 DOI: 10.1021/acs.est.2c07548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.
Collapse
Affiliation(s)
- Haoran Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Faqiang Zhan
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|