1
|
Zhao J, Zhang X, Yang F, Ai Y, Chen Y, Pan D. Strategy and Technical Progress of Recycling of Spent Vanadium-Titanium-Based Selective Catalytic Reduction Catalysts. ACS OMEGA 2024; 9:6036-6058. [PMID: 38371753 PMCID: PMC10870271 DOI: 10.1021/acsomega.3c07019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Selective catalytic reduction denitration technology, abbreviated as SCR, is essential for the removal of nitrogen oxide from the flue gas of coal-fired power stations and has been widely used. Due to the strong demand for energy and the requirements for environmental protection, a large amount of SCR catalyst waste is produced. The spent SCR catalyst contains high-grade valuable metals, and proper disposal or treatment of the SCR catalyst can protect the environment and realize resource recycling. This review focuses on the two main routes of regeneration and recycling of spent vanadium-titanium SCR catalysts that are currently most widely commercially used and summarizes in detail the technologies of recycling, high-efficiency recycling, and recycling of valuable components of spent vanadium-titanium SCR catalysts. This review also discusses in depth the future development direction of recycling spent vanadium-titanium SCR catalysts. It provides a reference for promoting recycling, which is crucial for resource recovery and green and low-carbon development.
Collapse
Affiliation(s)
- Jianying Zhao
- Institute
of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoguang Zhang
- Institute
of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| | - Feihua Yang
- Solid
Waste Reuse for Building Materials State Key Laboratory, Beijing Building Materials Academy of Science Research, Beijing 100038, PR China
| | - Yonghong Ai
- Jiangxi
Minmetals Gao’an Non-ferrous Metal Co., Ltd., Gaoan 330800, PR China
| | - Yousheng Chen
- Jiangxi
Minmetals Gao’an Non-ferrous Metal Co., Ltd., Gaoan 330800, PR China
| | - Dean Pan
- Institute
of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
2
|
Jiang M, Liu X, Zhang C, Zhou X, Zhang J, Liu Q, Xu Y, Qian G. Recognizing zeolite topologies for Cu 2+ localizations with effective activities for selective catalytic reduction of nitrogen oxide. CHEMOSPHERE 2023; 331:138746. [PMID: 37121281 DOI: 10.1016/j.chemosphere.2023.138746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Cu-loaded zeolites are widely investigated in selective catalytic reduction of nitrogen oxide, but effects of zeolite topologies on formed active species and the changing tendency remain unexplored. In this work, catalytic turnover frequencies (TOF) of Cu loaded ZSM-5, Beta, MOR, and SSZ-13 were first determined. The topology-localized Cu species in these zeolites were analyzed by temperature-programmed reduction of H2. Then Multiple Linear Regression distinguished TOF contributions (kj, s-1·mol-1) of the Cu species. Density functional theory calculated NH3 dehydrogenation energy of the Cu species. As a result, topologies with more node atoms showed bigger kj and lower dehydrogenation energies simultaneously. The best topology in each zeolite was 10-membered ring (ZSM-5), 6-membered ring facing a 12-membered ring (Beta), 8-membered ring (MOR), and cha cage (SSZ-13). Moreover, cha cage-localized Cu2+ exhibited the largest kj and the lowest dehydrogenation energy among all the Cu species. This work reveals topology-catalysis relationships in the zeolite, which benefits zeolite design for enhanced catalytic performances.
Collapse
Affiliation(s)
- Meijia Jiang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Xinyu Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Chenchen Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Xueqing Zhou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China; MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China.
| | - Qiang Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Yunfeng Xu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China; MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| |
Collapse
|
3
|
Zhang C, Jiang M, Liu X, Ding S, Zhang J, Yue Y, Qian G. Cordierite and citric acid regulate crystal structure of manganese oxide for effective selective catalytic reduction of nitrogen oxide. CHEMOSPHERE 2023; 313:137619. [PMID: 36563728 DOI: 10.1016/j.chemosphere.2022.137619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Catalyst is the key to effective selective catalytic reduction of nitrogen oxide, and developing catalyst is always one of the hottest topics in both field of industry and academy. In order to realize an industrial application, one catalyst must grow on a specific support. However, seldom work compared the difference of catalyst growth with or without support. In this work, Mn2+ growth on cordierite (a typical commercial catalyst support) was investigated. The formed active species were detailedly characterized. As a result, orthorhombic cordierite guided Mn2+ to form orthorhombic oxide (γ-MnO2). In comparison, Mn2+ preferred to form tetragonal β-MnO2 without the guide of cordierite. During the synthesis, cordierite and citric acid promoted γ-MnO2 dispersion, increased growth of exposed (301) facet, and created lattice distortion between (301) and (101) planes. β-MnO2 mainly exposed (101) facet. The best catalyst was γ-MnO2, which was mostly dominated by (301) facet and had an obvious lattice distortion from 75° to 78° between (301) and (101) planes. In comparison, 0.1 g of the γ-MnO2 reached a catalytic conversion rate 1.6 times bigger than 1.0 g of β-MnO2 at 250 °C. This work helps to understand guiding effect of support on formed catalytic species, which is in favor of developing effective commercial catalysts for environmental pollutants.
Collapse
Affiliation(s)
- Chenchen Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Meijia Jiang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Xinyu Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Suyan Ding
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China; MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang, Jiangxi, 337022, PR China.
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang, Jiangxi, 337022, PR China
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China; MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang, Jiangxi, 337022, PR China.
| |
Collapse
|
4
|
Wu X, Yang Y, Gong Y, Deng Z, Wang Y, Wu W, Zheng C, Zhang Y. Advances in air pollution control for key industries in China during the 13th five-year plan. J Environ Sci (China) 2023; 123:446-459. [PMID: 36522005 DOI: 10.1016/j.jes.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Industrial development is an essential foundation of the national economy, but the industry is also the largest source of air pollution, of which power plants, iron and steel, building materials, and other industries emit large amounts of pollutants. Therefore, the Chinese government has promulgated a series of stringent emission regulations, and it is against this backdrop that research into air pollution control technologies for key industrial sectors is in full swing. In particular, during the 13th Five-Year Plan, breakthroughs have been made in pollution control technology for key industrial sectors. A multi-pollutant treatment technology system of desulfurization, denitrification, and dust collection, which applies to key industries such as power plants, steel, and building materials, has been developed. High-performance materials for the treatment of different pollutants, such as denitrification catalysts and desulfurization absorbers, were developed. At the same time, multi-pollutant synergistic removal technologies for flue gas in various industries have also become a hot research topic, with important breakthroughs in the synergistic removal of NOx, SOx, and Hg. Due to the increasingly stringent emission standards and regulations in China, there is still a need to work on the development of multi-pollutant synergistic technologies and further research and development of synergistic abatement technologies for CO2 to meet the requirements of ultra-low emissions in industrial sectors.
Collapse
Affiliation(s)
- Xuecheng Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Yanping Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Gong
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiwen Deng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Wang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weihong Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Chenghang Zheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Yongxin Zhang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China.
| |
Collapse
|
5
|
Ye B, Jeong B, Lee MJ, Kim TH, Park SS, Jung J, Lee S, Kim HD. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources. NANO CONVERGENCE 2022; 9:51. [PMID: 36401645 PMCID: PMC9675887 DOI: 10.1186/s40580-022-00341-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Vanadium-based catalysts have been used for several decades in ammonia-based selective catalytic reduction (NH3-SCR) processes for reducing NOx emissions from various stationary sources (power plants, chemical plants, incinerators, steel mills, etc.) and mobile sources (large ships, automobiles, etc.). Vanadium-based catalysts containing various vanadium species have a high NOx reduction efficiency at temperatures of 350-400 °C, even if the vanadium species are added in small amounts. However, the strengthening of NOx emission regulations has necessitated the development of catalysts with higher NOx reduction efficiencies. Furthermore, there are several different requirements for the catalysts depending on the target industry and application. In general, the composition of SCR catalyst is determined by the components of the fuel and flue gas for a particular application. It is necessary to optimize the catalyst with regard to the reaction temperature, thermal and chemical durability, shape, and other relevant factors. This review comprehensively analyzes the properties that are required for SCR catalysts in different industries and the development strategies of high-performance and low-temperature vanadium-based catalysts. To analyze the recent research trends, the catalysts employed in power plants, incinerators, as well as cement and steel industries, that emit the highest amount of nitrogen oxides, are presented in detail along with their limitations. The recent developments in catalyst composition, structure, dispersion, and side reaction suppression technology to develop a high-efficiency catalyst are also summarized. As the composition of the vanadium-based catalyst depends mostly on the usage in stationary sources, various promoters and supports that improve the catalyst activity and suppress side reactions, along with the studies on the oxidation state of vanadium, are presented. Furthermore, the research trends related to the nano-dispersion of catalytically active materials using various supports, and controlling the side reactions using the structure of shaped catalysts are summarized. The review concludes with a discussion of the development direction and future prospects for high-efficiency SCR catalysts in different industrial fields.
Collapse
Affiliation(s)
- Bora Ye
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Bora Jeong
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Myeung-Jin Lee
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Tae Hyeong Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Sam-Sik Park
- R&D Center, NANO. Co., Ltd, Sangju, 37257, Republic of Korea
| | - Jaeil Jung
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea.
| | - Hong-Dae Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea.
| |
Collapse
|
6
|
Yin R, Chen J, Mi J, Liu H, Yan T, Shan L, Lang J, Li J. Breaking the Activity–Selectivity Trade-Off for Simultaneous Catalytic Elimination of Nitric Oxide and Chlorobenzene via FeVO 4–Fe 2O 3 Interfacial Charge Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rongqiang Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinxing Mi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liang Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junyu Lang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|