1
|
Vanapalli KR, Bhar R, Maity SK, Dubey BK, Kumar S, Kumar V. Life cycle assessment of fermentative production of lactic acid from bread waste based on process modelling using pinch technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167051. [PMID: 37717758 DOI: 10.1016/j.scitotenv.2023.167051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Bread waste (BW), a rich source of fermentable carbohydrates, has the potential to be a sustainable feedstock for the production of lactic acid (LA). In our previous work, the LA concentration of 155.4 g/L was achieved from BW via enzymatic hydrolysis, which was followed by a techno-economic analysis of the bioprocess. This work evaluates the relative environmental performance of two scenarios - neutral and low pH fermentation processes for polymer-grade LA production from BW using a cradle-to-gate life cycle assessment (LCA). The LCA was based on an industrial-scale biorefinery process handling 100 metric tons BW per day modelled using Aspen Plus. The LCA results depicted that wastewater from anaerobic digestion (AD) (42.3-51 %) and cooling water utility (34.6-39.5 %), majorly from esterification, were the critical environmental hotspots for LA production. Low pH fermentation yielded the best results compared to neutral pH fermentation, with 11.4-11.5 % reduction in the overall environmental footprint. Moreover, process integration by pinch technology, which enhanced thermal efficiency and heat recovery within the process, led to a further reduction in the impacts by 7.2-7.34 %. Scenario and sensitivity analyses depicted that substituting ultrapure water with completely softened water and sustainable management of AD wastewater could further improve the environmental performance of the processes.
Collapse
Affiliation(s)
- Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology, Mizoram, Aizawl, Mizoram 796012, India
| | - Rajarshi Bhar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Sandeep Kumar
- Department of Civil & Environmental Engineering, Old Dominion University, Norfolk, VA 23529, United States
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; C-Source Renewables Limited, Summit House, 4 - 5 Mitchell Street, Edinburgh EH6 7BD, UK.
| |
Collapse
|
2
|
Kim M, Rhee C, Wells M, Shin J, Lee J, Shin SG. Key players in syntrophic propionate oxidation revealed by metagenome-assembled genomes from anaerobic digesters bioaugmented with propionic acid enriched microbial consortia. Front Microbiol 2022; 13:968416. [DOI: 10.3389/fmicb.2022.968416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Propionic acid (HPr) is frequently accumulated in anaerobic digesters due to its thermodynamically unfavorable degradation reaction. Here, we identify key players in HPr oxidation and organic overloading recovery from metagenome-assembled genomes (MAGs) recovered from anaerobic digesters inoculated with HPr-enriched microbial consortia before initiating organic overloading. Two independent HPr-enrichment cultures commonly selected two uncultured microorganisms represented with high relative abundance: Methanoculleus sp002497965 and JABUEY01 sp013314815 (a member of the Syntrophobacteraceae family). The relative abundance of JABUEY01 sp013314815 was 60 times higher in bioaugmented bioreactors compared to their unaugmented counterparts after recovery from organic overloading. Genomic analysis of JABUEY01 sp013314815 revealed its metabolic potential for syntrophic propionate degradation when partnered with hydrogenotrophic methanogens (e.g., Methanoculleus sp002497965) via the methylmalonyl-CoA pathway. Our results identified at least two key species that are responsible for efficient propionate removal and demonstrate their potential applications as microbial cocktails for stable AD operation.
Collapse
|
3
|
Dalantai T, Rhee C, Kim DW, Yu SI, Shin J, Triolo JM, Shin SG. Complex network analysis of slaughterhouse waste anaerobic digestion: From failure to success of long-term operation. BIORESOURCE TECHNOLOGY 2022; 361:127673. [PMID: 35878765 DOI: 10.1016/j.biortech.2022.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The study explored slaughterhouse waste (SHW) as prime feedstock associated with and without supplement of an external slowly degradable lignocellulosic carbon source to overcome the synergistic co-inhibitions of ammonia and fatty acids. Long-term solid-state digestion (SSD) and liquid-state digestion (LSD) were investigated using a mixture of pork liver and fat. At 2.0 g volatile solids (VS) L-1 d-1 of organic loading rate (OLR), the two reactors of SSD experienced operational instability due to ammonia inhibition and volatile fatty acid (VFA) accumulation while LSD successfully produced 0.725 CH4 L CH4 g-1VS during 197 d of working days under unfavorable condition with high total ammonia nitrogen (>4.7 g/L) and VFAs concentration (>1.9 g/L). The network analysis between complex microflora and operational parameters provided an insight for sustainable biogas production using SHW. Among all, hydrogenotrophic methanogens have shown better resistance than acetoclastic methanogens.
Collapse
Affiliation(s)
- Tergel Dalantai
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea
| | - Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea
| | - Dae Wook Kim
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Il Yu
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea; School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea
| | - Jin Mi Triolo
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea; Department of Energy System Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
4
|
Rhee C, Park SG, Kim DW, Yu SI, Shin J, Hwang S, Shin SG. Tracking microbial community shifts during recovery process in overloaded anaerobic digesters under biological and non-biological supplementation strategies. BIORESOURCE TECHNOLOGY 2021; 340:125614. [PMID: 34315123 DOI: 10.1016/j.biortech.2021.125614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion encounters operational instability due to fluctuations in organic loading. Propionic acid (HPr) is frequently accumulated due to its unfavorable reaction thermodynamics. Here, 'specific' bioaugmentation using HPr enrichment cultures (three different injection regimes of quantity and frequency) was compared with 'non-specific' bioaugmentation using anaerobic sludge, and with non-biological supplementation of magnetite or coenzyme M. The specific bioaugmentation treatments showed superior recovery responses during continuous feeding after a peak overload. A 'one-shot' bioaugmentation with enrichment showed the best remediation, with ~25% recovery time and >10% CH4 conversion efficiency compared to the control. Consecutive bioaugmentation showed evidence of increased stability of the introduced community. Families Synergistaceae, Syntrophobacteraceae, and Kosmotogaceae were likely responsible for HPr-oxidation, in potential syntrophy with Methanoculleus and Methanobacterium. The different supplementation strategies can be considered to reduce the effect of start-up or overload in anaerobic digesters based on the availability of supplementation resources.
Collapse
Affiliation(s)
- Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dae Wook Kim
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Il Yu
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea.
| |
Collapse
|
5
|
Jo Y, Rhee C, Choi H, Shin J, Shin SG, Lee C. Long-term effectiveness of bioaugmentation with rumen culture in continuous anaerobic digestion of food and vegetable wastes under feed composition fluctuations. BIORESOURCE TECHNOLOGY 2021; 338:125500. [PMID: 34265595 DOI: 10.1016/j.biortech.2021.125500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Biogas plants treating food waste (FW) often experience feed load and composition fluctuations. In Korea, vegetable waste from the preparation of kimchi comprises over 20% of the total FW production during the Kimjang season. The large production of Kimjang waste (KW) can cause mechanical and operational problems in FW digesters. This study investigated the long-term effectiveness of bioaugmentation with rumen culture (38 months) in an anaerobic reactor co-digesting FW with varying amounts of KW. The bioaugmented reactor maintained better and stabler performance under recurrent fluctuations in feed characteristics than a non-bioaugmented control reactor, particularly under high ammonia conditions. Bioaugmentation increased microbial diversity, thereby improving the resilience of the microbial community. Some augmented microorganisms, especially Methanosarcina, likely played an important role in it. The results suggest that the proposed bioaugmentation strategy may provide a means to effectively treat and valorize KW-and potentially other seasonal lignocellulosic wastes-by co-digestion with FW.
Collapse
Affiliation(s)
- Yeadam Jo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Hyundai Engineering & Construction Co., Ltd., Hyundai Bldg. 75 Yulgok-ro, Jongno-gu, Seoul 03058, Republic of Korea
| | - Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Hyungmin Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|