1
|
Shawky AM, Kotp YH, Mousa MA, Aboelfadl MMS, Hekal EE, Zakaria K. Effect of titanium oxide/reduced graphene (TiO 2/rGO) addition onto water flux and reverse salt diffusion thin-film nanocomposite forward osmosis membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24584-24598. [PMID: 38448772 PMCID: PMC10998813 DOI: 10.1007/s11356-024-32500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Thin-film nanocomposite (TFN) forward osmosis (FO) membranes have attracted significant attention due to their potential for solving global water scarcity problems. In this study, we investigate the impact of titanium oxide (TiO2) and titanium oxide/reduced graphene (TiO2/rGO) additions on the performance of TFN-FO membranes, specifically focusing on water flux and reverse salt diffusion. Membranes with varying concentrations of TiO2 and TiO2/rGO were fabricated as interfacial polymerizing M-phenylenediamine (MPD) and benzenetricarbonyl tricholoride (TMC) monomers with TiO2 and its reduced graphene composites (TiO2/rGO). The TMC solution was supplemented with TiO2 and its reduced graphene composites (TiO2/rGO) to enhance FO performance and reverse solute flux. All MPD/TMC polyamide membranes are characterized using various techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. The results demonstrate that incorporating TiO2/rGO into the membrane thin layer improves water flux and reduces reverse salt diffusion. In contrast to the TFC membrane (10.24 L m-2h-1 and 6.53 g/m2 h), higher water flux and higher reverse solute flux were detected in the case of TiO2and TiO2/rGO-merged TFC skin membranes (18.81 and 24.52 L m-2h-1 and 2.74 and 2.15 g/m2 h, respectively). The effects of TiO2 and TiO2/rGO stacking on the skin membrane and the performance of TiO2 and TiO2/rGO skin membranes have been thoroughly studied. Additionally, being investigated is the impact of draw solution concentration.
Collapse
Affiliation(s)
- Amira M Shawky
- Sanitary and Environmental Institute (SEI), Housing and Building National Research Center (HBRC), Giza, 1770, Egypt.
| | - Yousra H Kotp
- Hydrogeochemistry Dept, Desert Research Center, El Mataryia, Cairo, 11753, Egypt
| | - Mahmoud A Mousa
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Eisa E Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Khaled Zakaria
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
2
|
Amini M, Haji Hosseinzadeh A, Nikkhoo M, Hosseinifard M, Namvar A, Naslhajian H, Bayrami A. High-Performance Novel Polyoxometalate-LDH Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14528-14538. [PMID: 37802097 DOI: 10.1021/acs.langmuir.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Numerous investigations have focused on creating effective membranes for desalination in order to alleviate the water scarcity crisis. In this study, first, LDH nanoplates were synthesized and utilized to alter the surface of thin-film composite (TFC) membranes in the course of this investigation. Following that, a simple technique was used to produce a novel nanocomposite incorporating LDH layers and Na14(P2W18Co4O70)·28H2O polyoxometalate nanoparticles, resulting in the creation of a fresh variety of thin-film nanocomposite (TFN). The performance of all of the membranes acquired was examined in the process of forward osmosis (FO). The impact of the compounds that were prepared was assessed on the hydrophilicity, topology, chemical structure, and morphology of the active layer of polyamide (PA) through analysis methods such as atomic force microscopy (AFM), energy-dispersive X-ray (EDX), FTIR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and water contact angle (WCA) goniometry. After evaluating the outcomes of both modified membrane types, it was observed that the membrane equipped with the nanocomposite modifier at a concentration of 0.01 wt % exhibited the highest water flux, measuring 46.6 LMH and selectivity of 0.23 g/L. This membrane was thus considered the best option. Furthermore, the membrane's ability to prevent fouling was examined, and the findings revealed an enhancement in its resistance to fouling in comparison to the filler-free membrane.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471 Tabriz, Iran
| | - Asal Haji Hosseinzadeh
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Mohammad Nikkhoo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694 Tehran, Iran
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center, P.O. Box 14155-4777 Karaj, Iran
| | - Amir Namvar
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Hadi Naslhajian
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615 Tehran, Iran
| |
Collapse
|
3
|
Amini M, Nikkhoo M, Bagherzadeh M, Ahadian MM, Bayrami A, Naslhajian H, Karamjavan MH. High-Performance Novel MoS 2@Zeolite X Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39765-39776. [PMID: 37614003 DOI: 10.1021/acsami.3c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Novel thin-film nanocomposite (TFN) membranes modified by the MoS2@Zeolite X nanocomposite were made and studied for desalination by the forward osmosis (FO) method. Herein, MoS2@Zeolite X nanocomposite (MoS2@Z) and zeolite X particles are integrated into the polyamide (PA) selective layer of the TFN membranes, separately. The aim of this study is the synthesis of nanocomposites containing hydrophilic zeolite X particles with a modified surface and pore and improvement of their effective properties on desalination and antifouling performance. For this purpose, MoS2 nanosheets with a high hydrophilicity were selected. The existence of polymer-matrix-compatible MoS2@Z inside the PA active layer caused the formation of a defect-free smooth surface with further channels within this layer that could increase the water flux and fouling resistance of the TFN membranes. The TFN-MZ2 membrane (containing 0.01 wt % MoS2@Z) showed the top desalination performance in the FO process. In contrast to the pristine thin-film composite (TFC) and TFN-Z2 membrane (containing 0.025 wt % zeolite X, the most optimal membrane among the zeolite-modified membranes), its water flux has increased by 2.6 and 1.8 times, respectively. Furthermore, in the fouling test, this optimal TFN-MZ2 membrane with a flux decrement of 19.6% revealed an ∼2.2- and 1.8-fold enhancement in antifouling tendency compared to the TFC and TFN-Z2, respectively. Also, based on the antibiofouling test, the water flux drop of 48.6% for the TFC membrane has reached 36.9% for the optimal membrane. Hence, this high-performance TFN-MZ2 membrane shows good capability for commercial employment in FO desalination application.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| | - Mohammad Nikkhoo
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Mohammad Mahdi Ahadian
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 1458889694, Tehran, Iran
| | - Hadi Naslhajian
- School of Chemistry, College of Science, University of Tehran, P.O. Box 1417935840, Tehran, Iran
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 8311155181, Maragheh, Iran
| | - Mohammad Hasanzadeh Karamjavan
- East Azarbaijan's Water and Waste Water Company, P.O. Box 5166617365, Tabriz, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| |
Collapse
|
4
|
Qamar MA, Javed M, Shahid S, Shariq M, Fadhali MM, Ali SK, Khan MS. Synthesis and applications of graphitic carbon nitride (g-C 3N 4) based membranes for wastewater treatment: A critical review. Heliyon 2023; 9:e12685. [PMID: 36660457 PMCID: PMC9842699 DOI: 10.1016/j.heliyon.2022.e12685] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.
Collapse
Affiliation(s)
- Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan,Corresponding author.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohammed M. Fadhali
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia,Department of Physics, Faculty of Science, Ibb University, Ibb, 70270, Yemen
| | - Syed Kashif Ali
- Department of Chemistry, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd. Shakir Khan
- Department of Physics, College of Science, Al- Zulfi, Majmaah University, Al- Majmaah, 11952, Saudi Arabia
| |
Collapse
|
5
|
Ibrar I, Yadav S, Altaee A, Safaei J, Samal AK, Subbiah S, Millar G, Deka P, Zhou J. Sodium docusate as a cleaning agent for forward osmosis membranes fouled by landfill leachate wastewater. CHEMOSPHERE 2022; 308:136237. [PMID: 36049636 DOI: 10.1016/j.chemosphere.2022.136237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Membrane cleaning is critical for economic and scientific reasons in wastewater treatment systems. Sodium docusate is a laxative agent and removes cerumen (ear wax). Docusate penetrates the hard ear wax, making it softer and easier to remove. The same concept could be applied to soften and remove fouling layers on the membrane surface. Once softened, the foulants can be easily flushed with water. This innovative approach can address the challenge of developing superior methods to mitigate membrane fouling and material degradation. In this study, we evaluated the efficiency of sodium docusate for cleaning fouled forward osmosis membranes with real landfill leachate wastewater. Experiments were conducted to examine the impact of dose rate, contact time, flow or static conditions, and process configuration (forward osmosis (FO) or pressure retarded osmosis (PRO) upon fouling created by landfill leachate dewatering. A remarkable (99%) flux recovery was achieved using docusate at a small concentration of only 0.1% for 30 min. Furthermore, docusate can also effectively restore flux with static cleaning without using pumps to circulate the cleaning solution. Furthermore, cleaning efficiency can be achieved at neutral pH compatible with most membrane materials. From an economic and energy-saving perspective, static cleaning can almost achieve the same cleaning efficiency as kinetic cleaning for fouled forward osmosis membranes without the expense of additional pumping energy compared to kinetic cleaning. Since pumping energy is a major contributor to the overall energy of the forward osmosis system, it can be minimized to a certain degree by using a static cleaning approach and can bring good energy savings when using larger membrane areas. Studies of the contact angle on the membrane surface indicated that the contact angle was decreased compared to the fouled membrane after cleaning (e.g. 70.3° to 63.2° or FO mode and static cleaning). Scanning Electron Microscopy revealed that the cleaning strategy was successful. Infrared Spectroscopy showed that a small amount of sodium docusate remained on the membrane surface. Docusate is more environmentally friendly than acid or alkaline solutions from an environmental perspective. Furthermore, the cleaning solution can be reused for several cycles without discarding it due to the surfactant properties of docusate.
Collapse
Affiliation(s)
- Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - Javad Safaei
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Science (CNMS), Jain University, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Graeme Millar
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Priyamjeet Deka
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| |
Collapse
|
6
|
Fabrication of antifouling two-dimensional MoS2 layered PVDF membrane: Experimental and density functional theory calculation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Jain H, Kumar A, Verma AK, Wadhwa S, Rajput VD, Minkina T, Garg MC. Treatment of textile industry wastewater by using high-performance forward osmosis membrane tailored with alpha-manganese dioxide nanoparticles for fertigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80032-80043. [PMID: 35426022 DOI: 10.1007/s11356-022-20047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Forward osmosis (FO) technology has been acknowledged as an energy-efficient cutting-edge water treatment innovation; however, the inefficient performance of polymer-based membranes remains a tailback in the practical utilization of FO. A significant issue in FO is membrane fouling, which negatively influences the flux efficiency, working expenses and membrane life expectancy. Membranes having high water flux and minimum reverse solute flux at low operating pressures are the ideal membranes for this process. This study reports a thin-film nanocomposite (TFNC) membrane for the treatment of textile industry wastewater utilizing fertilizer as draw solution fabricated via the phase inversion process. The chemical structure and morphology of the synthesized manganese oxide (MnO2) incorporated membrane were studied by various characterization techniques like X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, contact angle and gravimetry. The outcomes demonstrated that the nanoparticles were bonded to cellulose acetate polymer via covalent bonds and showed very hydrophilic membrane surface, along with an increased osmotic water flux of 52.5 L.m2.h-1 and reverse salt flux of 10.9 g.m2.h-1, when deionized wastewater and potassium chloride were used as the feed solution and the draw solution, respectively. In this manner, incorporating manganese oxide into the FO membrane may introduce its extraordinary possible application for the production of diluted fertilizer solution with balanced nutrients.
Collapse
Affiliation(s)
- Harshita Jain
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Ajay Kumar
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anoop Kumar Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147005, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies, Bidholi Campus, Dehradun, Uttarakhand, 248007, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
8
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Rehman F, Hussain Memon F, Ullah S, Jafar Mazumder MA, Al-Ahmed A, Khan F, Hussain Thebo K. Recent Development in Laminar Transition Metal Dichalcogenides-based Membranes Towards Water Desalination: A Review. CHEM REC 2022; 22:e202200107. [PMID: 35701111 DOI: 10.1002/tcr.202200107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Transition metal dichalcogenides (TMDCs)-based laminar membranes have gained significant interest in energy storage, fuel cell, gas separation, wastewater treatment, and desalination applications due to single layer structure, good functionality, high mechanical strength, and chemical resistivity. Herein, we review the recent efforts and development on TMDCs-based laminar membranes, and focus is given on their fabrication strategies. Further, TMDCs-based laminar membranes for water purification and seawater desalination are discussed in detail. Finally, present their merits, limits and future challenges needed in this area.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, Virginia, USA
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sindh, Pakistan
| | - Sami Ullah
- K.A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, China
| |
Collapse
|
10
|
Wen H, Soyekwo F, Liu C. Highly permeable forward osmosis membrane with selective layer “hooked” to a hydrophilic Cu-Alginate intermediate layer for efficient heavy metal rejection and sludge thickening. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Memon FH, Rehman F, Lee J, Soomro F, Iqbal M, Khan SM, Ali A, Thebo KH, Choi KH. Transition Metal Dichalcogenide-based Membranes for Water Desalination, Gas Separation, and Energy Storage. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2037000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering, College of EME, National University of Sciences and Technology, Peshawar Road, Rawalpindi, Pakistan
| | - Jaewook Lee
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
| | - Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Natural Science, University of Haripur KPK, Haripur, Pakistan
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Basic Science and Applied Sciences, University of Haripur KPK, Haripur, Pakistan
| | - Akbar Ali
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | | | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
| |
Collapse
|
12
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
13
|
Li X, Huang G, Chen X, Huang J, Li M, Yin J, Liang Y, Yao Y, Li Y. A review on graphitic carbon nitride (g-C 3N 4) based hybrid membranes for water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148462. [PMID: 34465053 DOI: 10.1016/j.scitotenv.2021.148462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has gained enormous attention for water and wastewater treatment. Compared with g-C3N4 nanopowders, g-C3N4 based hybrid membranes have demonstrated great potential for its superior practicability. This review outlines the preparation and characterization of g-C3N4 based hybrid membranes and presents their representative applications in water and wastewater treatment (e.g., removal of organic dyes, phenolic compounds, pharmaceuticals, salt ions, heavy metals, and oils). Meanwhile, g-C3N4 based films for the removal of contaminants through photocatalytic degradation is also summarized. In addition, the corresponding mechanisms and relevant findings are discussed. Finally, the challenges and research needs in the future and application of g-C3N4 based hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Xiang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ying Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|