1
|
Li L, Xiao K, Zhang J, Du R, Kang C. Construction of S-scheme g-C 3N 4/PbTiO 3 heterojunction and its highly efficient photocatalytic degradation of organic pollutants under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59610-59624. [PMID: 39361202 DOI: 10.1007/s11356-024-34987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024]
Abstract
This study successfully synthesized a composite photocatalyst g-C3N4/PbTiO3 through hydrothermal and calcination methods using PbTiO3 and g-C3N4. The catalyst was characterized by XRD, FTIR, Raman, XPS, SEM, TEM, UV-vis DRS, PL, and other techniques. The results indicate that the composite photocatalyst exhibits efficient electron transfer, enhanced light absorption, effective separation and utilization of photogenerated electron-hole pairs, demonstrating superior photocatalytic activity. Under simulated sunlight, the removal efficiency of methyl blue (MB) with an initial concentration of 10 mg/L reaches 93.0% after 120 min. After five cycles, the degradation efficiency of MB is 79.2%, still maintaining 85% of the initial catalytic activity. The pH values in the range of 4.0-7.0, inorganic anions, and water quality have a minimal impact on the photocatalytic degradation of MB. Additionally, the composite photocatalyst exhibits strong removal capabilities for other pollutants, such as tetracycline. Therefore, the prepared catalyst demonstrates good feasibility for practical applications. Free radical quenching experiments indicate that hydroxyl radicals (·OH) are the primary active groups in the photocatalytic degradation of MB. Based on this, a photocatalytic mechanism involving a S-scheme heterojunction has been proposed. This study provides new insights into preparing PbTiO3 composite semiconductors and constructing novel S-scheme heterojunctions.
Collapse
Affiliation(s)
- Longyun Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Kunkun Xiao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Suzhou Institute of Metrology, Suzhou, 215128, China
| | - Jinpu Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Ruihan Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Ahmad W, Shahzadi I, Haider A, Ul-Hamid A, Ullah H, Khan S, Somaily HH, Ikram M. Efficient Dye Degradation and Antimicrobial Behavior with Molecular Docking Performance of Silver and Polyvinylpyrrolidone-Doped Zn-Fe Layered Double Hydroxide. ACS OMEGA 2024; 9:5068-5079. [PMID: 38313529 PMCID: PMC10831970 DOI: 10.1021/acsomega.3c09890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Zn-Fe layered double hydroxide (LDH) was synthesized through the low-temperature-based coprecipitation method. Various concentrations of Ag (1, 3, and 5 wt %) with a fixed amount (5 wt %) of polyvinylpyrrolidone (PVP) were doped into LDH nanocomposites. This research aims to improve the bactericidal properties and catalytic activities of doping-dependent nanocomposites. Adding Ag and PVP to LDH enhanced oxygen vacancies, which increased the amount of hydroxide adsorption sites and the number of active sites. The doped LDH was employed to degrade rhodamine-B dye in the presence of a reducing agent (NaBH4), and the obtained results showed maximum dye degradation in a basic medium compared to acidic and neutral. The bactericidal efficacy of doped Zn-Fe (5 wt %) showed a considerably greater inhibition zone of 3.65 mm against Gram-negative (G-ve) or Escherichia coli (E. coli). Furthermore, molecular docking was used to decipher the mystery behind the microbicidal action of Ag-doped PVP/Zn-Fe LDH and to propose an inhibition mechanism of β-ketoacyl-acyl carrier protein synthase IIE. coli (FabH) and deoxyribonucleic acid gyrase E. coli behind in vitro results.
Collapse
Affiliation(s)
- Wakeel Ahmad
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| | - Iram Shahzadi
- School
of Pharmacy, University of Management and
Technology, Lahore 54770, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, Multan, Punjab 66000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hameed Ullah
- Laboratory
of Nanomaterials for Renewable Energy and Artificial Photosynthesis
(NanoREAP), Institute of Physics, UFRGS, Porto Alegre, Rio Grande
do Sul 91509-900, Brazil
| | - Sherdil Khan
- Laboratory
of Nanomaterials for Renewable Energy and Artificial Photosynthesis
(NanoREAP), Institute of Physics, UFRGS, Porto Alegre, Rio Grande
do Sul 91509-900, Brazil
| | - Hamoud H. Somaily
- Department
of Physics, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab 54000, Pakistan
| |
Collapse
|
3
|
Saber O, Osama A, Shaalan NM, Osama M. Nanolayered Structures and Nanohybrids Based on a Ternary System Co/Ti/Zn for Production of Photo-Active Nanocomposites and Purification of Water Using Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:93. [PMID: 38202547 PMCID: PMC10780314 DOI: 10.3390/nano14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Water pollution has emerged as a major challenge for the scientific community because of the rapid expansion of the population and the industrial sector in the world. The current study focuses on introducing a new track for designing new optical nanocomposites for purifying water in addition to providing a new additive for building new nanohybrids. These targets were achieved through building a ternary system of Co/Ti/Zn nanocomposites and nanolayered structures. The Co/Ti/Zn nanolayered structures were prepared and intercalated by different kinds of organic acids: monocarboxylic and dicarboxylic acids. Long chains of organic acids were used to construct series of organic-inorganic nanohybrids. X-ray diffraction, thermal analyses, Fourier Transform Infrared spectroscopy, and scanning electron microscopy confirmed the formation of nanolayered structures and nanohybrids. The optical properties of the nanolayered structure showed that the Co/Ti/Zn LDH became photo-active compared with the usual Al/Zn LDH because of the reduction in the band gap energy from 5.3 eV to 3.3 eV. After thermal treatment, a highly photo-active nanocomposite was produced through observing more reduction for the band gap energy to become 2.8 eV. In addition, the dye of Acid Green 1 completely decomposed and converted to water and carbon dioxide during 17 min of UV radiation by the dual Co/Ti-doped zinc oxide nanocomposite. In addition, the kinetic study confirmed that the high optical activity of the dual Co/Ti-doped zinc oxide nanocomposite accelerated the degradation of the green dyes. Finally, from these results it could be concluded that designing effective nanocomposite for purification of water was accomplished through converting 2D nanolayered structures to a 3D porous structure of Ni/Ti/Zn nanocomposites. In addition, a new additive was achieved for heterostructured hybrids through building new Co/Ti/Zn/organic nanohybrids.
Collapse
Affiliation(s)
- Osama Saber
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.O.); (N.M.S.); (M.O.)
- Egyptian Petroleum Research Institute, Nasr City, P.O. Box 11727, Cairo 11765, Egypt
| | - Aya Osama
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.O.); (N.M.S.); (M.O.)
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.O.); (N.M.S.); (M.O.)
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mostafa Osama
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.O.); (N.M.S.); (M.O.)
| |
Collapse
|
4
|
Gan F, Rao Q, Deng J, Cheng L, Zhong Y, Lu Z, Wang F, Wang J, Zhou H, Rao G. Controllable Architecture of ZnO/FeNi Composites Derived from Trimetallic ZnFeNi Layered Double Hydroxides for High-Performance Electromagnetic Wave Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300257. [PMID: 36967536 DOI: 10.1002/smll.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The optimization design of micro-structure and composition is an important strategy to obtain high-performance metal-based electromagnetic (EM) wave absorption materials. In this work, ZnO/FeNi composites derived from ZnFeNi layered double hydroxides are prepared by a one-step hydrothermal method and subsequent pyrolysis process, and can be employed as an effective alternative for high-performance EM wave absorber. A series of ZnO/FeNi composites with different structures are obtained by varying the molar ratios of Zn2+ /Fe3+ /Ni2+ , and the ZnO/FeNi composites with a Zn2+ /Fe3+ /Ni2+ molar ratio of 6:1:3 show a hierarchical flower-like structure. Owing to the strong synergistic loss mechanism of dielectric-magnetic components and favorable structural features, this hierarchical flower-like ZnO/FeNi sample supplies the optimal EM wave absorption performance with the highest reflection loss of -52.08 dB and the widest effective absorption bandwidth of 6.56 GHz. The EM simulation further demonstrates that impedance matching plays a determining role in EM wave absorption performance. This work provides a new way for the fabrication of a high-performance metal-based EM wave absorber.
Collapse
Affiliation(s)
- Fangyu Gan
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Qingrong Rao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jianqiu Deng
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Lichun Cheng
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Yan Zhong
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zhao Lu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Feng Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jiang Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Huaiying Zhou
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Guanghui Rao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| |
Collapse
|
5
|
Jiménez A, Trujillano R, Rives V, Vicente MÁ. Mixed–metal–oxide photocatalysts generated by high–temperature calcination of CaAlFe, hydrocalumite–LDHs prepared from an aluminum salt–cake. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Palharim PH, Caira MCD, de Araújo Gusmão C, Ramos B, dos Santos GT, Rodrigues Jr. O, Teixeira ACSC. Effect of temperature and time on the hydrothermal synthesis of WO3-AgCl photocatalysts regarding photocatalytic activity. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Augmenting the Photocatalytic Performance of Direct Z-Scheme Bi2O3/g-C3N4 Nanocomposite. Catalysts 2022. [DOI: 10.3390/catal12121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Huge demands for photocatalytically efficient visible-light-induced catalysts have spurred widespread interest in building adaptable heterojunctions. Here, we used in situ thermal polymerization to synthesise the Z-scheme Bi2O3/g-C3N4 heterojunction. The optical, structural, chemical, compositional and photocatalytic behaviours of the samples were analysed through various analytical techniques and photocatalytic methylene blue (MB) dye degradation reaction. Among the various ratios of Bi2O3/g-C3N4 heterojunction composites, the 1:1 ratio showed improved visible-light-induced catalytic activity, which attained 91.2% degradation efficiency after 120 min of visible-light exposure. The dye degradation efficiency was calculated under various environmental conditions by varying the dye concentration, solution pH and catalyst dosage. A improved Z-scheme photocatalytic mechanism was proposed in light of the results. A potential mechanism was suggested to explain the photocatalytic activity, and trapping experiments supported it. Last but not least, this strategy might be helpful to prepare the heterojunction photocatalyst for the degradation of organic pigments.
Collapse
|
8
|
Keyikoğlu R, Doğan IN, Khataee A, Orooji Y, Kobya M, Yoon Y. Synthesis of visible light responsive ZnCoFe layered double hydroxide towards enhanced photocatalytic activity in water treatment. CHEMOSPHERE 2022; 309:136534. [PMID: 36210593 DOI: 10.1016/j.chemosphere.2022.136534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, a ternary layered double hydroxide containing Zn, Co, and Fe transition metals (ZnCoFe LDH) was developed using a co-precipitation procedure. The as-synthesized photocatalyst was evaluated for its performance in the degradation of methylene blue (MB) under visible light irradiation. The effects of various process conditions including photocatalyst dosage, pollutant concentration, pH, lamp distance, and lamp power were investigated. The ZnCoFe LDH achieved approximately 74% photodegradation efficiency owing to the narrow bandgap of 2.14 eV. The Langmuir-Hinselwood rate constants were calculated as 1.17 min-1 and 3.55 min-1 for photolysis by LED lamp alone and for photocatalysis by LED/ZnCoFe LDH, respectively. The photocatalytic ability of the LDH was attributed to the generation of radical species like •OH and O2•-. The photocatalytic degradation intermediates of MB were determined by GC-MS analysis. The catalyst retained its performance throughout seven reuse cycles with only a 4.17% reduction in removal efficiency. The energy per order EEO of the ZnCoFe/LED process in 180 min treatment time was determined as 5.41 kWh.m-3. order-1. This study shows that ZnCoFe LDH has sufficient activity and photostability for long-term application in photocatalytic water treatment.
Collapse
Affiliation(s)
- Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310, Bursa, Turkey
| | - Irmak Naz Doğan
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Mehmet Kobya
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
9
|
Photocatalytic Degradation of Malachite Green by NiAl-LDH Intercalated Polyoxometalate Compound. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.3.15418.627-637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Composites based on layered double hydroxide with polyoxometalate K3[-PW12O40] and K4[-SiW12O40] were synthesized to form NiAl-[SiW12O40] and NiAl-[PW12O40]. The materials were characterized by XRD, FTIR, SEM, and UV-DRS and were then applied as a photocatalyst to degrade MG. The effects of catalyst loading, pH value, and contact times on photodegradation performance were carried out in this study. The results indicated that NiAl-LDH was successfully synthesized by showing the peak diffractions at angles 11.63°, 23.13°, and 35.16°. Both kinds of attained NiAl-[SiW12O40] and NiAl-[PW12O40] had typical structures of LDH that were proved by appearing diffraction at 2θ angles 10.76°, 26.59°, 30.8°, and 63.11° for NiAl-[PW12O40] and at 2θ angles 8.26°, 11.34°, 29°, and 35.1° for NiAl-[SiW12O40]. The materials used for the fifth regeneration were characterized by FTIR, which still presents characteristics of LDH structure. The photocatalyst was applied for the first time to degrade MG. The decrease of band gap on NiAl pristine than LDH composite from 4.76 eV to 3.22 eV for NiAl-[SiW12O40] and 3.78 eV for NiAl-[PW12O40] respectively, was presented by DR-UV analysis. LDH composite shows improved degradation photocatalytic performance in comparison with LDH pristine. It was present by the %degradation MG performances were 68.94% for NiAl LDH, 84.51% for NiAl-[PW12O40]), and 88.91% for NiAl-[SiW12O40]. The degradation percentage indicates that the LDH-polyoxometalate composite has succeeded in increasing the ability of photodegradation catalytic and the regeneration ability of LDH pristine. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
10
|
Xia G, Zheng Y, Sun Z, Xia S, Ni Z, Yao J. Fabrication of ZnAl-LDH mixed metal-oxide composites for photocatalytic degradation of 4-chlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39441-39450. [PMID: 35103946 DOI: 10.1007/s11356-022-18989-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this work, two different types of ZnAl-layered double hydroxide (LDH) mixed metal-oxide composites (CeO2 and SnO2) were synthesized and applied for the photodegradation of 4-chlorophenol (4-CP) in wastewater. The fabricated CeO2/ZnAl-LDH and SnO2/ZnAl-LDH were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and theoretical density functional theory (DFT) calculations, suggesting that the band gaps of the synthesized hybrid composites were much lower than those of traditional ZnAl-LDH. In addition, the photocatalytic activity for 4-CP degradation and reaction kinetics were investigated to evaluate the catalytic behavior of the prepared composites. The results indicated that the photocatalytic process in this case followed a pseudo-first-order kinetic model, and SnO2/ZnAl-LDH illustrated the optimum performance for 4-CP degradation with an efficiency of 95.2% due to its stability and recyclability. Additionally, the reaction mechanism of 4-CP photodegradation was studied over SnO2/ZnAl-LDH; it presented that 4-CP could be oxidized by hydroxyl radicals, holes, and superoxide radicals, where hydroxyl radicals were identified as the dominant active species during the degradation process. Finally, decomposition intermediates were measured to deduce the reaction pathway of 4-CP, and three tentative pathways were proposed and discussed.
Collapse
Affiliation(s)
- Guanghua Xia
- College of Life Science, Taizhou University, Taizhou, 318000, China
| | - Yumei Zheng
- Huangyan Branch of Taizhou Ecology and Environment Bureau, Taizhou, 318020, China
| | - Zhiyin Sun
- College of Life Science, Taizhou University, Taizhou, 318000, China
| | - Shengjie Xia
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zheming Ni
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiachao Yao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
11
|
Pooresmaeil M, Namazi H. Facile coating of the methotrexate-layered double hydroxide nanohybrid via carboxymethyl starch as a pH-responsive biopolymer to improve its performance for colon-specific therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Du T, Zhang G, Zou J. Coupling photocatalytic and electrocatalytic oxidation towards simultaneous removal of humic acid and ammonia-nitrogen in landscape water. CHEMOSPHERE 2022; 286:131717. [PMID: 34418660 DOI: 10.1016/j.chemosphere.2021.131717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Aiming to bring photocatalytic and electrocatalytic oxidation processes into solving practical issue of organics and ammonia-nitrogen pollution in landscape water that resulting in algae bloom and eutrophication, this work firstly investigates photocatalytic oxidation of humic acid and electrochemical oxidation of ammonia upon optimization of each process parameters, respectively. The platinum modified titania (Pt/TiO2) exhibits improved activity than pure titania and CuOx, MnOx and NiOx modified titania for decomposition of humic acid. As an application-oriented study, this work has developed a simple and effective brushing and annealing method for immobilization of TiO2 and Pt/TiO2 onto ceramic foam for further application. In addition, the RuO2-IrO2/Ti electrode presents the best electrocatalytic activity compared with RuO2/Ti and IrO2/Ti electrodes in terms of ammonia oxidation, and the ammonia conversion pathways have been studied. Lastly, an integrated and enlarged reactor system employing optimized photocatalytic ceramic foam and stable electrodes has been developed for simultaneous oxidation of humic acid and ammonia-nitrogen in water circulated flow condition, based on cooperative production of reactive oxidant species between photocatalysis and electrocatalysis. The results show that coupled photocatalytic and electrocatalytic oxidation is a promising approach for treatment of organic matter and inorganic ammonia nitrogen in landscape water.
Collapse
Affiliation(s)
- Tingting Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| | - Jing Zou
- General Education Division, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
13
|
Zobir SAM, Ali A, Adzmi F, Sulaiman MR, Ahmad K. A Review on Nanopesticides for Plant Protection Synthesized Using the Supramolecular Chemistry of Layered Hydroxide Hosts. BIOLOGY 2021; 10:1077. [PMID: 34827070 PMCID: PMC8614857 DOI: 10.3390/biology10111077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
The rapid growth in the human population has triggered increased demand for food supply, and in turn has prompted a higher amount of agrochemical usage to meet the gaps between food production and consumption. The problem with conventional agro-nanochemicals is the reduced effectiveness of the active ingredient in reaching the target, along with leaching, evaporation, etc., which ultimately affect the environment and life, including humans. Fortunately, nanotechnology platforms offer a new life for conventional pesticides, which improves bioavailability through different kinetics, mechanisms and pathways on their target organisms, thus enabling them to suitably bypass biological and other unwanted resistances and therefore increase their efficacy. This review is intended to serve the scientific community for research, development and innovation (RDI) purposes, by providing an overview on the current status of the host-guest supramolecular chemistry of nanopesticides, focusing on only the two-dimensional (2D), brucite-like inorganic layered hydroxides, layered hydroxide salts and layered double hydroxides as the functional nanocarriers or as the hosts in smart nanodelivery systems of pesticides for plant protection. Zinc layered hydroxides and zinc/aluminum-layered double hydroxides were found to be the most popular choices of hosts, presumably due to their relative ease to prepare and cheap cost. Other hosts including Mg/Al-, Co/Cr-, Mg/Fe-, Mg/Al/Fe-, Zn/Cr- and Zn/Cu-LDHs were also used. This review also covers various pesticides which were used as the guest active agents using supramolecular host-guest chemistry to combat various pests for plant protection. This looks towards a new generation of agrochemicals, "agro-nanochemicals", which are more effective, and friendly to life, humans and the environment.
Collapse
Affiliation(s)
- Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia;
| | - Fariz Adzmi
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Mohd Roslan Sulaiman
- Department of Science and Biomedicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|