1
|
Xiao J, Yang S, Xiang L, Qin B, You J, Dong M, Xie Y, Zhang X, Chen X, Li Z, Li H, Feng J. Analysis of the causes of redo pull-through for recurrent constipation and the risk factors affecting the prognosis of the Hirschsprung's disease: a single-center retrospective study and systematic review. BMC Pediatr 2025; 25:313. [PMID: 40264046 PMCID: PMC12013011 DOI: 10.1186/s12887-025-05680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital gastrointestinal disorder. Pull-through (PT) surgery, the primary treatment, often leads to recurrent constipation. The causes of redo pull-through (redo-PT) for recurrent constipation remain unclear, with limited research on follow-up outcomes and prognostic factors. METHODS We searched "PubMed" and "Web of Science" for references using the title/abstract terms "Hirschsprung" and "Redo pull-through". We enrolled patients from the literature review group and our retrospective group who underwent redo-PT for recurrent constipation. A comparative analysis was conducted between two groups based on the clinical information for redo-PT. RESULTS A total of 360 cases were collected from the references (327 patients) and our center (33 patients). Recurrent aganglionosis (RA) and Mechanical Obstruction (MO) were the primary reasons for redo-PT, accounting for 52.50% and 36.67%, respectively. When comparing the causes of redo-PT between the literature group and our center group, RA accounted for 49.85% and 75.76%, while MO accounted for 49.85% and 21.21%, respectively. Prognostic outcomes of 31 patients from our center were analyzed, revealing no significant associations between postoperative complications and gender, age, causes of redo pull-through, or surgical approach (P > 0.05). CONCLUSIONS Recurrent constipation requiring redo-PT are predominantly caused by RA and MO. Gender, age, causes of redo pull-through, or surgical approach do not affect the prognosis of redo-PT. The laparoscopic approach demonstrated superior cosmetic outcomes compared to the laparotomy approach.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Bo Qin
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
- Department of Cardiovascular Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Mei Dong
- Department of Pediatrics, The People's Hospital of Qihe County, Dezhou, China
| | - Youshan Xie
- Department of Emergency, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Shenzhen, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China.
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China.
| | - Honglin Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China.
- Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China.
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China.
| |
Collapse
|
2
|
Yang X, Tang C, Zhu D, Xia X, Du Q, Huang L, Liu J, Liu Y. Nonylphenol exposure increases the risk of Hirschsprung's disease by inducing macrophage M1 polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117756. [PMID: 39837008 DOI: 10.1016/j.ecoenv.2025.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown. Herein, we identified the content of NP and expression of lncRNA LINC00294/Inhibin Subunit Beta E (INHBE) axis in clinical samples and evaluated the crucial role of lncRNA LINC00294/INHBE axis in the neurogenic potential of neurons and the neurotoxicity effects of NP in the SH-SY5Y cells and female specific pathogen-free (SPF) rat model. Our results showed that NP concentration and LINC00294 were significantly associated with HSCR occurrence and macrophage polarization in human HSCR specimens. Moreover, NP promoted macrophage M1 polarization. The proliferation and migration were weakened, and apoptosis was heightened by the conditioned medium of NP-treated macrophages in SH-SY5Y cells. Contrarily, LINC00294 overexpression and INHBE knockdown reversed the neurotoxicity effect of NP on SH-SY5Y cells. Furthermore, the neurotoxicity effect of NP was abolished by clodronate liposomes in the rat model. In conclusion, NP could induce macrophage M1 polarization via the LINC00294/INHBE axis and increase the risk of Hirschsprung's disease. Our findings would provide a foundation for the toxicity study and risk assessments of NP.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China; Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chengyan Tang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Daiwei Zhu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Xingrong Xia
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Qing Du
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Lu Huang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuanmei Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China.
| |
Collapse
|
3
|
Jones K, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Use of Cosmetics in Pregnancy and Neurotoxicity: Can It Increase the Risk of Congenital Enteric Neuropathies? Biomolecules 2024; 14:984. [PMID: 39199372 PMCID: PMC11352589 DOI: 10.3390/biom14080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a particularly vulnerable period for the growing fetus, when exposure to toxic agents, especially in the early phases, can decisively harm embryo development and compromise the future health of the newborn. The inclusion of various chemical substances in personal care products (PCPs) and cosmetic formulations can be associated with disruption and damage to the nervous system. Microplastics, benzophenones, parabens, phthalates and metals are among the most common chemical substances found in cosmetics that have been shown to induce neurotoxic mechanisms. Although cosmetic neurotoxin exposure is believed to be minimal, different exposure scenarios of cosmetics suggest that these neurotoxins remain a threat. Special attention should be paid to early exposure in the first weeks of gestation, when critical processes, like the migration and proliferation of the neural crest derived cells, start to form the ENS. Importantly, cosmetic neurotoxins can cross the placental barrier and affect the future embryo, but they are also secreted in breast milk, so babies remain exposed for longer periods, even after birth. In this review, we explore how neurotoxins contained in cosmetics and PCPs may have a role in the pathogenesis of various neurodevelopmental disorders and neurodegenerative diseases and, therefore, also in congenital enteric aganglionosis as well as in postnatal motility disorders. Understanding the mechanisms of these chemicals used in cosmetic formulations and their role in neurotoxicity is crucial to determining the safety of use for cosmetic products during pregnancy.
Collapse
Affiliation(s)
- Kendra Jones
- “Translational Medical Research” Master Program, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Kaiserslautern, Germany;
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Lin YJ, Li HM, Gao YR, Wu PF, Cheng B, Yu CL, Sheng YX, Xu HM. Environmentally relevant concentrations of benzophenones exposure disrupt intestinal homeostasis, impair the intestinal barrier, and induce inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123948. [PMID: 38614423 DOI: 10.1016/j.envpol.2024.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.
Collapse
Affiliation(s)
- Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Rong Gao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping-Fan Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen-Long Yu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yu-Xin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Breakell T, Kowalski I, Foerster Y, Kramer R, Erdmann M, Berking C, Heppt MV. Ultraviolet Filters: Dissecting Current Facts and Myths. J Clin Med 2024; 13:2986. [PMID: 38792526 PMCID: PMC11121922 DOI: 10.3390/jcm13102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Skin cancer is a global and increasingly prevalent issue, causing significant individual and economic damage. UV filters in sunscreens play a major role in mitigating the risks that solar ultraviolet ra-diation poses to the human organism. While empirically effective, multiple adverse effects of these compounds are discussed in the media and in scientific research. UV filters are blamed for the dis-ruption of endocrine processes and vitamin D synthesis, damaging effects on the environment, induction of acne and neurotoxic and carcinogenic effects. Some of these allegations are based on scientific facts while others are simply arbitrary. This is especially dangerous considering the risks of exposing unprotected skin to the sun. In summary, UV filters approved by the respective governing bodies are safe for human use and their proven skin cancer-preventing properties make them in-dispensable for sensible sun protection habits. Nonetheless, compounds like octocrylene and ben-zophenone-3 that are linked to the harming of marine ecosystems could be omitted from skin care regimens in favor of the myriad of non-toxic UV filters.
Collapse
Affiliation(s)
- Thomas Breakell
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Isabel Kowalski
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Yannick Foerster
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
- Department of Dermatology and Allergy Biederstein, Technical University (TU) Munich, 80802 Munich, Germany
| | - Rafaela Kramer
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Markus V. Heppt
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| |
Collapse
|
6
|
Nie Y, Liu H, Wu R, Fan J, Yang Y, Zhao W, Bao J, You Z, He F, Li Y. Interference with SPARC inhibits Benzophenone-3 induced ferroptosis in osteoarthritis: Evidence from bioinformatics analyses and biological experimentation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116217. [PMID: 38489904 DOI: 10.1016/j.ecoenv.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The aim of this study is to conduct a thorough evaluation of the association between Benzophenone-3 (BP-3) exposure and OA, offering critical insights into the underlying mechanisms involved. The National Health and Nutrition Examination Survey (NHANES) database was utilized to investigate the correlation between BP-3 and osteoarthritis. Proteomic sequencing from clinical sample and the PharmMapper online tool were employed to predict the biological target of BP-3. Cellular molecular assays and transfection studies were performed to verify the prediction from bioinformatics analyses. Through cross-sectional analysis of the NHANES database, we identified BP-3 as a risk factor for OA development. The results of proteomic sequencing showed that Secreted Protein Acidic and Rich in Cysteine (SPARC) was significantly elevated in the area of damage compared to the undamaged area. SPARC was also among the potential biological targets of BP-3 predicted by the online program. Through in vitro cell experiments, we further determined that the toxicological effects of BP-3 may be due to SPARC, which elevates intracellular GPX4 levels, activates the glutathione system, and promotes lipid peroxidation to mitigate ferroptosis. Inhibiting SPARC expression has been shown to reduce inflammation and ferroptosis in OA contexts. This research provides an expansive understanding of BP-3's influence on osteoarthritis development. We have identified SPARC as a potent target for combating chondrocyte ferroptosis in BP-3-associated osteoarthritis.
Collapse
Affiliation(s)
- Yaoyao Nie
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Houpu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Runtao Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Wenxia Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiapeng Bao
- Department of Orthopaedics, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310058, China
| | - Zhenqiang You
- Department of Food Science and Engineering, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
7
|
Jou-Claus S, Rodríguez-Escales P, Martínez-Landa L, Diaz-Cruz MS, Carrera J, Sunyer-Caldú A, Quintana G, Valhondo C. Assessing the Fate of Benzophenone-Type UV Filters and Transformation Products during Soil Aquifer Treatment: The Biofilm Compartment as Bioaccumulator and Biodegrader in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5472-5482. [PMID: 38466321 DOI: 10.1021/acs.est.3c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.
Collapse
Affiliation(s)
- Sònia Jou-Claus
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Paula Rodríguez-Escales
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Lurdes Martínez-Landa
- Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Jesús Carrera
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
- Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| | - Cristina Valhondo
- Associated Unit: Hydrogeology Group (UPC-CSIC), Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
- Institute of Environmental Assessment and Water Research Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC), Barcelona 08034, Spain
| |
Collapse
|
8
|
Wang J, Meng X, Chen X, Xiao J, Yu X, Wu L, Li Z, Chen K, Zhang X, Xiong B, Feng J. Cinchophen induces RPA1 related DNA damage and apoptosis to impair ENS development of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116032. [PMID: 38306819 DOI: 10.1016/j.ecoenv.2024.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have become contaminants widely distributed in the environment due to improper disposal and discharge. Previous study has found several components might involve in impairing enteric nervous system (ENS) development of zebrafish, including NSAIDs cinchophen. Deficient ENS development in fetal could lead to Hirschsprung disease (HSCR), a congenital neurocristopathy characterized by absence of enteric neurons in hindgut. However, the intrinsic mechanism of neurotoxicity of cinchophen is unclear. We confirmed that cinchophen could impair ENS development of zebrafish and transcriptome sequencing revealed that disfunction of Replication protein A1 (RPA1), which is involved in DNA replication and repairment, might be relevant to the neurotoxicity effects induced by cinchophen. Based on previous data of single cell RNA sequencing (scRNA-seq) of zebrafish gut cells, we observed that rpa1 mainly expressed in proliferating, differentiating ENS cells and neural crest progenitors. Interestingly, cinchophen induced apoptosis and impaired proliferation. Furthermore, cinchophen caused DNA damage and abnormal activation of ataxia telangiectasia mutated/ Rad3 related (ATM/ATR) and checkpoint kinase 2 (CHK2). Finally, molecular docking indicated cinchophen could bind and antagonize RPA1 more effectively. Our study might provide a better understanding and draw more attention to the role of environmental factors in the pathogenesis of HSCR. And the mechanism of cinchophen neurotoxicity would give theoretical guidance for clinical pharmacy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Shenzhen 518000, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Yao YN, Wang Y, Zhang H, Gao Y, Zhang T, Kannan K. A review of sources, pathways, and toxic effects of human exposure to benzophenone ultraviolet light filters. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:30-44. [PMID: 38162868 PMCID: PMC10757257 DOI: 10.1016/j.eehl.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Benzophenone ultraviolet light filters (BPs) are high-production-volume chemicals extensively used in personal care products, leading to widespread human exposure. Given their estrogenic properties, the potential health risks associated with exposure to BPs have become a public health concern. This review aims to summarize sources and pathways of exposure to BPs and associated health risks. Dermal exposure, primarily through the use of sunscreens, constitutes a major pathway for BP exposure. At a recommended application rate, dermal exposure of BP-3 via the application of sunscreens may reach or exceed the suggested reference dose. Other exposure pathways to BPs, such as drinking water, seafood, and packaged foods, contribute minimal to the overall dose. Inhalation is a minor pathway of exposure; however, its contribution cannot be ignored. Human exposure to BPs is an order of magnitude higher in North America than in Asia and Europe. Studies conducted on laboratory animals and cells have consistently demonstrated the toxic effects of BP exposure. BPs are estrogenic and elicit reproductive and developmental toxicities. Furthermore, neurotoxicity, hepatotoxicity, nephrotoxicity, and carcinogenicity have been reported from chronic BP exposure. In addition to animal and cell studies, epidemiological investigations have identified associations between BPs and couples' fecundity and other reproductive disorders, as well as adverse birth outcomes. Further studies are urgently needed to understand the risks posed by BPs on human health.
Collapse
Affiliation(s)
- Ya-Nan Yao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hengling Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York, NY 12237, USA
| |
Collapse
|
10
|
Moreira ALP, Souza JACR, de Souza JF, Mamede JPM, Farias D, Luchiari AC. Long-term effects of embryonic exposure to benzophenone-3 on neurotoxicity and behavior of adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168403. [PMID: 37939945 DOI: 10.1016/j.scitotenv.2023.168403] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Benzophenone-3 (BP-3) is the most widely used ultraviolet filter (UV filter) in industries to avoid UV radiation damage. BP-3 is added to most sunscreens to protect the skin, hair, and lips from sun rays. It results in continuous discharge into aquatic environments, leading to aquatic biota and human's continuous exposure. Consequences of BP-3 exposure on the physiology and behavior of aquatic animals, mainly zebrafish, have been investigated, including their neurotoxic effects. However, little is known about its consequences in long-term developmental endpoints. This study aimed to investigate the long-term effects of embryonic BP-3 exposure on biomarkers of neurotoxicity in zebrafish. For this, we exposed embryos to 5, 10, and 20 μg∙L-1 BP-3 concentration and let fish grow to adulthood (5mpf). We evaluated anxiety-like behavior, social preference, aggressiveness, and enzymatic activity of the antioxidant defenses system and neurotoxic biomarkers (Glutathione S-transferase -GST, catalase -CAT, and acetylcholinesterase -AChE) in adult zebrafish. Enzymatic activities were also investigated in larvae immediately after BP-3 exposure. Animals early exposed to BP-3 presented anxiety-like behaviors and decreased social preference, but aggressiveness was not altered. In general, exposure to BP-3 leads to altered enzymatic activity, which persists into adulthood. GST activity increased in embryos and adults, while CAT activity decreased in both life stages. AChE activity enhanced only at the larval stage (96 hpf). The long-term behavioral and biochemical effects of BP-3 highlight the need for abolishing or restricting the compound from personal care products, which are continually disposed into the environment and threaten the biota and human health.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jéssica Ferreira de Souza
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - João Paulo Medeiros Mamede
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
11
|
An G, Park J, You J, Park H, Hong T, Lim W, Song G. Developmental toxicity of flufenacet including vascular, liver, and pancreas defects is mediated by apoptosis and alters the Mapk and PI3K/Akt signal transduction in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109735. [PMID: 37659609 DOI: 10.1016/j.cbpc.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Release of agrochemicals from agricultural fields could unintentionally harm organisms that not targeted by pesticides. Flufenacet is one of the oxyacetamide herbicide applied in cultivation fields of crops and this has a possibility of unintentional exposure to diverse ecosystems including streams and surface water. Despite these environmental risks, limited information regarding toxicity of flufenacet on vertebrates is available. This study is aimed to assess environmental hazards and underlying toxic mechanisms of flufenacet by using a zebrafish model. Mortality measurements and morphological observations after the treatment of flufenacet suggested developmental toxicity of flufenacet in zebrafish. In addition, its toxicity on specific organs was evaluated using transgenic fluorescent zebrafish embryo. Adverse effects of flufenacet on vascular and hepatopancreatic development were demonstrated using Tg(flk1:EGFP) and Tg(fabp10a:DsRed; ela3l:EGFP) respectively. To address intracellular actions of flufenacet in zebrafish, cellular responses including apoptosis, cell cycle modulation, and Mapk and Akt signaling pathway were verified in transcriptional and protein levels. These results demonstrated developmental toxicity of flufenacet using the zebrafish model, providing essential information for assessing its potential hazards on vertebrates that are not directly targeted by the pesticide and for elucidating molecular mechanisms.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Ma J, Qin C, Hu X, Lin Z, Li Z, Gao Y. Health risks posed by environmental benzophenone-type ultraviolet filters (BP-UVFs): An investigation into the binding of BP-UVFs to trypsin and their adverse effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132231. [PMID: 37557051 DOI: 10.1016/j.jhazmat.2023.132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Benzophenone-type ultraviolet filters (BP-UVFs) are ubiquitous in the environment, and people frequently ingest them via food chain and drinking water. However, there is no clear information about whether BP-UVFs are detrimental to human health. Herein, experiments using multi-spectroscopy revealed typical BP-UVFs, i.e., benzophenone (BP), 2-hydroxybenzophenone (2-OHBP), 4-hydroxybenzophenone (4-OHBP), 2,2'-dihydroxybenzophenone (2,2'-OHBP), 2,4-dihydroxybenzophenone (2,4-OHBP), 4,4'-dihydroxybenzophenone (4,4'-OHBP), 2,4,4'-trihydroxybenzophenone (2,4,4'-OHBP), 2,2',4,4'-tetraphydroxybenzophenone (2,2',4,4'-OHBP), 2-hydroxy-4-methoxybenzophenone (2-OH-4-MeOBP) and 2,2'-dihydroxy-4-methoxybenzophenone (2,2'-OH-4-MeOBP), could bind to the active site of trypsin with different binding constants (2.69 × 104-1.07 × 106 L/mol), cause structural abnormalities and inhibit the enzymatic activity in varying degrees, indicating that the BP-UVFs ingestion poses a risk to human health. In contrast to previous research, this study systematically analysed the binding mechanism using an innovative combination of molecular docking and advanced quantum chemistry calculations, including molecular dynamics simulations, energy calculations, etc. The results revealed that most amino acids that make up trypsin have a greater positive electrostatic surface potential (ESP). Therefore, the greater the area and distribution of negative ESP in a particular BP-UVFs, the more easily it will bind to trypsin. This provides new insight into the binding of pollutants to proteins. This study suggests a need for better monitoring and control of environmental BP-UVFs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Chen K, You J, Yang S, Meng X, Chen X, Wu L, Yu X, Xiao J, Feng J. Abnormally elevated expression of ACTA2 of circular smooth muscle leads to hyperactive contraction in aganglionic segments of HSCR. Pediatr Surg Int 2023; 39:214. [PMID: 37278766 PMCID: PMC10244273 DOI: 10.1007/s00383-023-05479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Actin Alpha 2 (ACTA2) is expressed in intestinal smooth muscle cells (iSMCs) and is associated with contractility. Hirschsprung disease (HSCR), one of the most common digested tract malformations, shows peristaltic dysfunction and spasm smooth muscles. The arrangement of the circular and longitudinal smooth muscle (SM) of the aganglionic segments is disorganized. Does ACTA2, as a marker of iSMCs, exhibit abnormal expression in aganglionic segments? Does the ACTA2 expression level affect the contraction function of iSMCs? What are the spatiotemporal expression trends of ACTA2 during different developmental stages of the colon? METHODS Immunohistochemical staining was used to detect the expression of ACTA2 in iSMCs of children with HSCR and Ednrb-/- mice, and the small interfering RNAs (siRNAs) knockdown technique was employed to investigate how Acta2 affected the systolic function of iSMCs. Additionally, Ednrb-/- mice were used to explore the changes in the expression level of iSMCs ACTA2 at different developmental stages. RESULTS The expression of ACTA2 is higher in circular SM in the aganglionic segments of HSCR patients and Ednrb-/- mice than in normal control children and mice. Down regulation of Acta2 weakens the contraction ability of intestinal smooth muscle cells. Abnormally elevated expression of ACTA2 of circular smooth muscle occurs since embryonic day 15.5 (E15.5d) in aganglionic segments of Ednrb-/- mice. CONCLUSIONS Abnormally elevated expression of ACTA2 in the circular SM leads to hyperactive contraction, which may cause the spasm of aganglionic segments in HSCR.
Collapse
Affiliation(s)
- Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China.
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China.
| |
Collapse
|
14
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
15
|
Wang Y, Jiang S, Chen X, Liu X, Li N, Nie Y, Lu G. Comparison of developmental toxicity of benzophenone-3 and its metabolite benzophenone-8 in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106515. [PMID: 37011548 DOI: 10.1016/j.aquatox.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Benzophenone-3 (BP-3) as one of frequently used organic UV filters has been considered an emerging pollutant due to its toxicities. Benzophenone-8 (BP-8) is one of the main metabolites of BP-3 in organisms. Current reports show that BP-8 may be more toxic than BP-3. However, difference of their toxicities on embryonic development has rarely been reported. In this study, zebrafish embryos were chosen as the target organism to explore the developmental toxicities of BP-3 and BP-8. Non-targeted metabolomic analysis was performed to compare their modes of action. Results showed that BP-8 exposures led to higher bioaccumulation and lower hatching rate of zebrafish larvae than BP-3. Both BP-8 and BP-3 exposures caused behavioral abnormalities of zebrafish larvae, but no significant difference was found between them. At the metabolome level, 1 μg/L BP-3 and 1 μg/L BP-8 exposures altered neuroactive ligand-receptor interaction pathway and FoxO signaling pathway, respectively, which might be involved in the abnormal behaviors in zebrafish larvae. For higher exposure groups (30 and 300 μg/L), both BP-3 and BP-8 exposures changed metabolism of cofactors and vitamins of zebrafish larvae. Exposure of BP-3 altered the metabolism by pantothenate and CoA biosynthesis pathway, while BP-8 exposure changed riboflavin metabolism and folate biosynthesis. The above results indicated different modes of action of BP-3 and BP-8 in zebrafish embryonic development. This study sheds new light to biological hazards of BP-3 due to its metabolism in aquatic organisms.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaodan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Na Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yang Nie
- Hangzhou Hydrology and Water Resources Monitoring Center, Hangzhou 310016, PR China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
16
|
Shi Y, Wang H, Zhu Z, Ye Q, Lin F, Cai G. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160129. [PMID: 36370798 DOI: 10.1016/j.scitotenv.2022.160129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND People are commonly exposed to mixtures of parabens and phenols. Most studies investigating such exposure and cognitive performance tend to assess only single chemicals, and the tools used to assess cognitive function are not uniform. OBJECTIVE This study aimed to examine the association between multiple parabens and phenols and cognitive function in older Americans. METHODS The study included data of older Americans from two cycles of the NHANES survey. Participants were divided into normal cognitive performance and low cognitive performance groups based on the scores of four cognitive tests: the Immediate Recall test (IRT), the Delayed Recall test (DRT), the Animal Fluency test (AFT) and the Digit Symbol Substitution test (DSST). Generalized linear regression models (GLMs), restricted cubic spline (RCS), weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were used to assess relationships between chemical exposure and cognitive performance. RESULTS In this cross-sectional study, a total of 961 participants, 470 males and 491 females, were included. GLMs revealed positive association between high levels of bisphenol A (BPA) and low cognitive performance on DRT, especially in male (OR (95%CI): 2.25 (1.10-4.61)), and this association was consistent with WQS and BKMR. In female participants, the third quartile of BPA exposure showed a positive association with low cognition on IRT and global cognition. GLMs also showed that high levels of propylparaben were positively associated with cognitive performance on the IRT in male participants (OR (95%CI): 0.37 (0.18-0.76)). In BKMR, an overall positive correlation between the mixture and low cognition as measured with DRT was observed in male subjects when the mixture was at the 65th percentile or higher. CONCLUSION Exposure to a mixture of parabens and phenols was positively associated with low cognitive performance on DRT in older male subjects, while BPA was the main driver of this outcome.
Collapse
Affiliation(s)
- Yisen Shi
- Fujian Medical University, Fuzhou 35001, China; Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | | | - Zhibao Zhu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350005, Fujian, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| |
Collapse
|
17
|
Liu Y, Yang G, Yang C, Shi Z, Ru Y, Shen N, Xiao C, Wang Y, Gao Y. The Mechanism of Houttuynia cordata Embryotoxicity Was Explored in Combination with an Experimental Model and Network Pharmacology. Toxins (Basel) 2023; 15:73. [PMID: 36668893 PMCID: PMC9864403 DOI: 10.3390/toxins15010073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Houttuynia cordata (H. cordata) is the most common herb as a food and traditional Chinese medicine. Currently, studies on its toxicity have mainly focused on hepatotoxicity. However, its potential embryotoxicity by long-term exposure is often overlooked. Objective: To investigate the effects of H. cordata on embryonic development and its toxicity mechanism by combining network pharmacology, molecular docking, and in vitro experimental methods. Methods: The effects of H. cordata on embryos were evaluated. Zebrafish embryos and embryoid bodies were administered to observe the effects of H. cordata on embryonic development. Based on network pharmacological analysis, it was found that the main active agents producing toxicity in H. cordata were oleanolic acid, lignan, and aristolactam AII. H. cordata can affect PI3K-Akt, MAPK, and Ras signaling pathways by regulating targets, such as AKT1, EGFR, CASP3, and IGF-1. RT-PCR and immunohistochemistry results showed that the expression of AKT1 and PI3K in the embryoid body was significantly reduced after drug administration (p < 0.05). Conclusions: The results of network pharmacology and in vitro experiments suggest that H. cordata may affect embryonic development by influencing the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yufu Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Guodong Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuo Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ningning Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
18
|
Xu W, Yu H, Chen D, Pan W, Yang W, Miao J, Jia W, Zheng B, Liu Y, Chen X, Gao Y, Tian D. Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets. WORLD JOURNAL OF PEDIATRIC SURGERY 2023; 6:e000547. [PMID: 37082700 PMCID: PMC10111925 DOI: 10.1136/wjps-2022-000547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
Objective Hirschsprung disease (HSCR) is one of the common neurocristopathies in children, which is associated with at least 20 genes and involves a complex regulatory mechanism. Transcriptional regulatory network (TRN) has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR. This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR. Methods Based on three microarray datasets from the Gene Expression Omnibus database, the multiMiR package was used to investigate the microRNA (miRNA)-target interactions, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we collected transcription factors (TFs) from the TransmiR database to construct the TF-miRNA-mRNA regulatory network and used cytoHubba to identify the key modules. Finally, the receiver operating characteristic (ROC) curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method. Results We identified 58 hub differentially expressed microRNAs (DEMis) and 16 differentially expressed mRNAs (DEMs). The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms, including neurogenesis, cell-substrate adhesion, PI3K-Akt, Ras/mitogen-activated protein kinase and Rho/ROCK signaling. Moreover, 2 TFs (TP53 and TWIST1), 4 miRNAs (has-miR-107, has-miR-10b-5p, has-miR-659-3p, and has-miR-371a-5p), and 4 mRNAs (PIM3, CHUK, F2RL1, and CA1) were identified to construct the TF-miRNA-mRNA regulatory network. ROC analysis revealed a strong diagnostic value of the key TRN regulons (all area under the curve values were more than 0.8). Conclusion This study suggests a potential role of the TF-miRNA-mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.
Collapse
Affiliation(s)
- Wenyao Xu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Dian Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Weikang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weili Yang
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Miao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wanying Jia
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Wang J, Li Z, Xiao J, Wu L, Chen K, Zhu T, Feng C, Zhuansun D, Meng X, Feng J. Identification and validation of the common pathogenesis and hub biomarkers in Hirschsprung disease complicated with Crohn's disease. Front Immunol 2022; 13:961217. [PMID: 36248794 PMCID: PMC9555215 DOI: 10.3389/fimmu.2022.961217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although increasing evidence has supported that Hirschsprung disease (HSCR) is the risk factor for children developing Crohn's disease (CD), the common mechanism of its co-occurrence remains unknown. The purpose of this study is to further explore the underlying mechanism and biomarkers for the co-occurrence of HSCR and CD. METHODS The Gene Expression Omnibus (GEO) database was used to obtain gene expression profiles for CD (GSE95095) and HSCR (GSE98502). Following the identification of the shared differentially expressed genes (DEGs) of CD and HSCR, functional annotation, protein-protein interaction (PPI) network creation, and module assembly were performed to discover hub genes. RT-qPCR was performed to validate the expression of the hub genes in HSCR samples. The receiver operating characteristic (ROC) curve was utilized to assess the accuracy of the hub genes as biomarkers in predicting CD in both the training dataset and test dataset. RESULTS A total of 103 common DEGs (50 downregulated genes and 53 upregulated genes) were chosen for further investigation. The importance of chemokines and cytokines in these two disorders is highlighted by functional analysis. MCODE plug identified three important modules, which functionally enriched the immune system process. Finally, nine hub genes were identified using cytoHubba, including IL1B, IL10, CXCL10, ICAM1, EGR1, FCGR3A, S100A12, S100A9, and FPR1. The nine hub genes were mainly enriched in immune- and inflammation-related pathways. External data profiles and RT-qPCR confirmed the expression of the nine hub genes in HSCR and CD. ROC analysis revealed that the nine hub genes had a strong diagnostic value. CONCLUSION Our study reveals the common pathogenesis of HSCR and CD. These hub genes and diagnostic models may provide novel insight for the diagnosis and treatment of HSCR complicated with CD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Chenzhao Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China
| |
Collapse
|
20
|
Downs CA, Diaz-Cruz MS, White WT, Rice M, Jim L, Punihaole C, Dant M, Gautam K, Woodley CM, Walsh KO, Perry J, Downs EM, Bishop L, Garg A, King K, Paltin T, McKinley EB, Beers AI, Anbumani S, Bagshaw J. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129546. [PMID: 35941056 DOI: 10.1016/j.jhazmat.2022.129546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In 2019, sands in nearby runoff streams from public beach showers were sampled on three islands in the State of Hawaii and tested for over 18 different petrochemical UV filters. Beach sands that are directly in the plume discharge of beach showers on three of the islands of Hawaii (Maui, Oahu, Hawai'i) were found to be contaminated with a wide array of petrochemical-based UV-filters that are found in sunscreens. Sands from beach showers across all three islands had a mean concentration of 5619 ng/g of oxybenzone with the highest concentration of 34,518 ng/g of oxybenzone at a beach shower in the Waikiki area of Honolulu. Octocrylene was detected at a majority of the beach shower locations, with a mean concentration of 296.3 ng/g across 13 sampling sites with the highest concentration of 1075 ng/g at the beach shower in Waikiki. Avobenzone, octinoxate, 4-methylbenzylidene camphor and benzophenone-2 were detected, as well as breakdown products of oxybenzone, including benzophenone-1, 2,2'-dihydroxy-4-methoxybenzophenone, and 4-hydroxybenzophenone. Dioxybenzone (DHMB) presented the highest concentration in water (75.4 ng/mL), whereas octocrylene was detected in all water samples. Some of these same target analytes were detected in water samples on coral reefs that are adjacent to the beach showers. Risk assessments for both sand and water samples at a majority of the sampling sites had a Risk Quotient > 1, indicating that these chemicals could pose a serious threat to beach zones and coral reef habitats. There are almost a dozen mitigation options that could be employed to quickly reduce contaminant loads associated with discharges from these beach showers, like those currently being employed (post-study sampling and analysis) in the State of Hawaii, including banning the use of sunscreens using petrochemical-based UV filters or educating tourists before they arrive on the beach.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Marc Rice
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Laura Jim
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Cindi Punihaole
- Kahalu`u Bay Education Center, The Kohala Center, P.O. Box 437462, Kamuela, HI 967, USA
| | - Mendy Dant
- Fair Wind Cruises, Kailua Kona, HI 96740, USA
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Cheryl M Woodley
- US National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, USA
| | - Kahelelani O Walsh
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Jenna Perry
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Evelyn M Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
| | - Lisa Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, USA
| | - Achal Garg
- Chemists Without Borders, Sacramento, CA 95835, USA
| | - Kelly King
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Tamara Paltin
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | | | - Axel I Beers
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jeff Bagshaw
- Hawaii Division of Forestry and Wildlife, 685 Haleakala Hwy, Kahului, HI 96732, USA
| |
Collapse
|
21
|
Li J, Bi H. Integrated Strategy of Network Pharmacology and in vitro Screening to Identify Mechanism of Diazinon-induced Hippocampal Neurotoxicity. Neurotoxicology 2022; 92:122-130. [DOI: 10.1016/j.neuro.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
22
|
Ma J, Qin C, Waigi MG, Gao Y, Hu X, Mosa A, Ling W. Functional group substitutions influence the binding of benzophenone-type UV filters with DNA. CHEMOSPHERE 2022; 299:134490. [PMID: 35385766 DOI: 10.1016/j.chemosphere.2022.134490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
As a class of possible carcinogens, benzophenone-type UV filters (BPs) widely exist in natural environments and organisms. The crucial step of the carcinogenic process induced by cancerous toxins is binding with DNA to form adducts. Here, the binding of 10 typical BPs, i.e., benzophenone (BP1), 2-hydroxyl benzophenone (BP2), 4-hydroxyl benzophenone (BP3), 2,2'-dihydroxyl benzophenone (BP4), 2,4-dihydroxyl benzophenone (BP5), 4,4'-dihydroxyl benzophenone (BP6), 2,4,4'-trihydroxyl benzophenone (BP7), 2,2',4,4'-tetrahydroxyl benzophenone (BP8), 2-hydroxyl-4-methoxyl benzophenone (BP9), and 2,2'-dihydroxyl-4-methoxyl benzophenone (BP10), with DNA was tested via fluorescence quenching experiments. Only hydroxyl group-substituted BPs could bind to DNA by groove binding mode, and the quenching constants were 0.93 × 103-5.89 × 103 L/mol. Substituted BPs were preferentially bound to thymine. Circular dichroism analysis confirmed that BPs could affect DNA base stacking but could not transform its B-form. Based on molecular electrostatic surface potential analyses, molecular dynamics simulations, and energy decomposition calculations, it could be found that the site and number of hydroxyl substitution changed the molecular polarity of BPs, thereby affecting the number and strength of hydrogen bonds between BPs and DNA. The hydroxyl substitution at site 2 was more conducive to binding than at site 4. This study is beneficial in comprehending the carcinogenic mechanisms of BPs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
23
|
Downs CA, Bishop E, Diaz-Cruz MS, Haghshenas SA, Stien D, Rodrigues AMS, Woodley CM, Sunyer-Caldú A, Doust SN, Espero W, Ward G, Farhangmehr A, Tabatabaee Samimi SM, Risk MJ, Lebaron P, DiNardo JC. Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, U.S.A. CHEMOSPHERE 2022; 291:132880. [PMID: 34780745 DOI: 10.1016/j.chemosphere.2021.132880] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Hanauma Bay is a 101-acre bay created by the partial collapse of a volcanic cone and once supported a vibrant coral reef system. It is the most popular swimming area in the Hawaiian Islands and has been reported to have averaged between 2.8 and 3.5 million visitors a year between the 1980s and the 2010s, with visitors averaging between 3000-4000 a day and peaking around 10,000-13,000 per day. Concentrations of oxybenzone and other common UV filters were measured in subsurface water samples and in sands from the beach-shower areas in Hanauma Bay. Results demonstrate that beach showers also can be a source of sunscreen environmental contamination. Hydrodynamic modeling indicates that oxybenzone contamination within Hanauma Bay's waters could be retained between 14 and 50 h from a single release event period. Focusing on only oxybenzone, two different Hazard and Risk Assessment analyses were conducted to determine the danger of oxybenzone to Hanauma Bay's coral reef system. Results indicate that oxybenzone contamination poses a significant threat to the wildlife of Hanauma Bay. To recover Hanauma Bay's natural resources to a healthy condition and to satisfactorily conserve its coral reef and sea grass habitats, effective tourism management policies need to be implemented that mitigate the threat of sunscreen pollution.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA, 2453, USA; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France.
| | - Elizabeth Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI, 96825-07610, USA
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center. Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Cheryl M Woodley
- U.S. National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd. Charleston, SC, 29412, USA
| | - Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center. Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - William Espero
- Hawaii State Senate, Senate District 19, Hawaii State Capitol, 415 S. Beretania St. Honolulu, HI, 96813, USA
| | - Gene Ward
- Hawaii State Legislature, House District 17, Hawaii State Capitol, 415 S. Beretania St. Honolulu, HI, 96813, USA
| | | | | | - Michael J Risk
- Department of Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | | |
Collapse
|
24
|
Cui R, Jong MC, You L, Mao F, Yao D, Gin KYH, He Y. Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. CHEMOSPHERE 2022; 286:131735. [PMID: 34385031 DOI: 10.1016/j.chemosphere.2021.131735] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are global pollutants with heightened environmental and health concerns in recent years because of their worldwide distribution across aquatic environments, ability to load chemical contaminants and the potential for ingestion by animals, including human. In this study, three commonly used and environmentally detected plastics, i.e. polystyrene, polyethylene, polypropylene with sizes of 550, 250 and 75 μm, plus two submicron-sized polystyrene microplastics (5 and 0.5 μm) were assessed as solid adsorbents for a prevalent UV filter, benzophenone-3 (BP-3). The affinity and process of adsorption exhibited differentials among different sizes and types of MPs. Apparent desorption of BP-3 from MPs under simulated gastrointestinal conditions was not significantly enhanced, which might be due to the presence of the enzyme proteins, indicating potential risk of the contaminants carried by MPs. The desorption of BP-3 from MPs was affected by the size, type of MPs and the components of the gastrointestinal fluid.
Collapse
Affiliation(s)
- Ruofan Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Mui-Choo Jong
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Luhua You
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Feijian Mao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Dingding Yao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Karina Yew-Hoong Gin
- National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
| |
Collapse
|
25
|
Hou Y, Wang X, Zhang Y, Wang S, Meng X. Highland mate: Edible and functional foods in traditional medicine for the prevention and treatment of hypoxia-related symptoms. Curr Opin Pharmacol 2021; 60:306-314. [PMID: 34508939 DOI: 10.1016/j.coph.2021.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The highlands evoke both fascination and awe. Regardless of the reason to live in the highlands, symptoms related to altitude sickness are unbearable because of low atmospheric pressure, low oxygen concentration, strong ultraviolet radiation, cold, and psychological factors. Food and herbal medicines and/or health-care foods have protected highland dwellers owing to their multisystem regulation. These versatile products combine health-care properties with medical values by enhancing immunity, relieving physical fatigue, improving sleep, and augmenting hypoxia tolerance, with rare side effects. We therefore aimed to provide a more comprehensive analysis of these nutraceuticals, which can be used to prevent and treat symptoms of altitude hypoxia in the Chinese market. Finally, we dissect a new perspective for their promotion and development from molecular aspects.
Collapse
Affiliation(s)
- Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|