1
|
Ji X, Chen L, Yang G, Tang C, Zhou W, Liu T, Lu X. Mutagenesis and fluorescence-activated cell sorting of oleaginous Saccharomyces cerevisiae and the multi-omics analysis of its high lipid accumulation mechanisms. BIORESOURCE TECHNOLOGY 2024; 406:131062. [PMID: 38964514 DOI: 10.1016/j.biortech.2024.131062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Acquiring lipid-producing strains of Saccharomyces cerevisiae is necessary for producing high-value palmitoleic acid. This study sought to generate oleaginous S. cerevisiae mutants through a combination of zeocin mutagenesis and fluorescence-activated cell sorting, and then to identify key mutations responsible for enhanced lipid accumulation by multi-omics sequencing. Following three consecutive rounds of mutagenesis and sorting, a mutant, MU310, with the lipid content of 44%, was successfully obtained. Transcriptome and targeted metabolome analyses revealed that a coordinated response involving fatty acid precursor biosynthesis, nitrogen metabolism, pentose phosphate pathway, ethanol conversion, amino acid metabolism and fatty acid β-oxidation was crucial for promoting lipid accumulation. The carbon fluxes of acetyl-CoA and NADPH in lipid biosynthesis were boosted in these pathways. Certain transcriptional regulators may also play significant roles in modulating lipid biosynthesis. Results of this study provide high-quality resource for palmitoleic acid production and deepen the understanding of lipid synthesis in yeast.
Collapse
Affiliation(s)
- Xiaotong Ji
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Chen
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Songling Rd 238, Qingdao 266100, China
| | - Chunlei Tang
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Wenjun Zhou
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| |
Collapse
|
2
|
Yang Q, Ran Y, Guo S, Li F, Xiang D, Cao Y, Qiao D, Xu H, Cao Y. Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Int J Biol Macromol 2023; 253:127008. [PMID: 37844810 DOI: 10.1016/j.ijbiomac.2023.127008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fazhi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dongyou Xiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
3
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Maurya R, Gohil N, Nixon S, Kumar N, Noronha SB, Dhali D, Trabelsi H, Alzahrani KJ, Reshamwala SMS, Awasthi MK, Ramakrishna S, Singh V. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels. BIORESOURCE TECHNOLOGY 2023; 372:128668. [PMID: 36693507 DOI: 10.1016/j.biortech.2023.128668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Snovia Nixon
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nilesh Kumar
- M.Tech. Programme in Bioprocess Engineering, Institute of Chemical Technology, Mumbai, India; DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debarun Dhali
- EV Biotech BV, Zernikelaan 8, 9747 AA Groningen, The Netherlands
| | - Heykel Trabelsi
- Carbocode GmbH, Byk-Gulden-Strasse 2, 78467 Konstanz, Germany
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suresh Ramakrishna
- College of Medicine, Hanyang University, Seoul, South Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
5
|
Chen L, Peng Q, Chen Y, Wang C, Li K, Nian H. Enhancement production of lipid and unsaturation of fatty acids in Cryptococcus humicola via addition of calcium ion. World J Microbiol Biotechnol 2022; 39:50. [PMID: 36542152 DOI: 10.1007/s11274-022-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lipids synthesized by oleaginous yeasts are considered to be the best candidates for biodiesel production. Cryptococcus humicola as an oleaginous yeast accumulated lipid in cells. In order to optimize the conditions for lipid production, different carbon and nitrogen sources were used and metals were added into the medium. Ca2+ addition increased the lipid production greatly. Xylose and peptone were optimal carbon source and nitrogen source, respectively for lipid accumulation. Response surface experiment results revealed that the accumulation of lipid could be maximized when the xylose, peptone and Ca2+ concentration was 61 g/L, 4.31 g/L, 0.67 mmol/L. C16 and C18 fatty acid account for about 91% of the total fatty acids. The most abundant fatty acid was oleic acid (42.68%), followed by palmitic acid (29.7%) and stearic acid (13.87%). The addition of Ca2+ increased the content of unsaturated fatty acids (such as C16:1 and C18:1) and improved the unsaturation of fatty acids. Quantitative real time PCR analysis revealed that expression of genes related to lipid biosynthesis showed up-regulated by Ca2+ treatment. This study provided a strategy for increase in lipid production and content of unsaturated fatty acids.
Collapse
Affiliation(s)
- Lu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Qianyun Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yuner Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Chengsong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
6
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Uprety BK, Morrison EN, Emery RJN, Farrow SC. Customizing lipids from oleaginous microbes: leveraging exogenous and endogenous approaches. Trends Biotechnol 2021; 40:482-508. [PMID: 34625276 DOI: 10.1016/j.tibtech.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
To meet the growing demands of the oleochemical industry, tailored lipid sources are expanding to oleaginous microbes. To control the fatty acid composition of microbial lipids, ground-breaking exogenous and endogenous approaches are being developed. Exogenous approaches employ extracellular tools such as product-specific feedstocks, process optimization, elicitors, and magnetic and mechanical energy, whereas endogenous approaches leverage biology through the use of product-specific microbes, adaptive laboratory evolution (ALE), and the creation of custom strains via random and targeted cellular engineering. We consolidate recent advances from both fields into a review that will serve as a resource for those striving to fulfill the vision of microbial cell factories for tailored lipid production.
Collapse
Affiliation(s)
- Bijaya K Uprety
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Erin N Morrison
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Scott C Farrow
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|