1
|
Tang W, Huang Z, Liu Y, Zeng X. Effect of Cu(II) and Conserved Copper Binding Sites on the Multicopper Oxidase CopA and Characterization of BioMnO x. Proteins 2025; 93:515-526. [PMID: 39271479 DOI: 10.1002/prot.26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The microbial manganese removal process is believed to consist of the catalytic oxidation of Mn(II) by manganese oxidase. In this study, the multicopper oxidase CopA was purified and exhibited high manganese oxidation activity in vitro, and it was found that Cu(II) can significantly enhance its manganese oxidation activity. Gene site-directed mutagenesis was used to mutate four conserved copper binding sites of CopA to obtain four mutant strains. The manganese removal efficiencies of the four strains were determined, and it was found that H120 is the catalytically active site of CopA. The loss of Cu(II) and the mutation of the conserved copper binding site H120 resulted in the loss of ethoxyformyl and quinone modifications, a reduction in the number of modifications, and a change in the position of modifications, eventually causing a decrease in protein activity from 85.87% to 70.1%. These results reveal that Cu(II) and H120 play an indispensable role in manganese oxidation by the multicopper oxidase CopA. X-ray photoelectron spectroscopy (XPS) analysis indicates that biogenic manganese oxides produced by strains and by CopA were both composed of MnO2 and Mn3O4 and that the average valence of Mn was 3.2.
Collapse
Affiliation(s)
- Wenwei Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Zuxun Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yunying Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Xinping Zeng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Tang W, Zhang P, Jin X, Li X, Chen S, Zeng X. Mutations of methionine 444 interacting with T1Cu-coordinating amino acids affect the structure and function of multicopper oxidase CopA. Biodegradation 2024; 36:2. [PMID: 39470852 DOI: 10.1007/s10532-024-10102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Manganese is an essential trace element for humans, animals, and plants, but excessive amounts of manganese can cause serious harm to organisms. The biological manganese oxidation process mainly oxidizes Mn(II) through the secretion of unique manganese oxidase by manganese-oxidizing bacteria. The T1 Cu site of multicopper oxidase is the main site for substrate oxidation, and its role is to transfer electrons to TNC, where dioxygen reduction occurs. In this study, methionine (Met) No. 444 interacting with the T1Cu-coordinating amino acid in the multicopper oxidase CopA from Brevibacillus panacihumi MK-8 was mutated to phenylalanine (Phe) and leucine (Leu) by the enzyme. Based on the analysis of enzymatic properties and the structural model, the mutant protein M444F with 4.58 times the catalytic efficiency of the original protein CopA and the mutant protein M444L with 1.67 times the catalytic efficiency of the original protein CopA were obtained. The study showed that the manganese removal rate of the manganese-oxidizing engineered bacterium Rosetta-pET-copAM444L cultured for 7 days was 88.87%, which was 10.77% higher than that of the original engineered bacterium. Overall, this study provides a possibility for the application of genetic engineering in the field of biological manganese removal.
Collapse
Affiliation(s)
- Wenwei Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Peiqi Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoyu Jin
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaorong Li
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shichao Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xinping Zeng
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Li Q, Shi M, Liao Q, Li K, Huang X, Sun Z, Yang W, Si M, Yang Z. Molecular response to the influences of Cu(II) and Fe(III) on forming biogenic manganese oxides by Pseudomonas putida MnB1. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135298. [PMID: 39053055 DOI: 10.1016/j.jhazmat.2024.135298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The biogeochemical cycle of biogenic manganese oxides (BioMnOx) is closely associated with the environmental behavior and fate of various pollutants. It is significantly interfered by many metals, such as Cu and Fe. However, the bacterial molecular responses are not clear. Here, the effects of Cu(II) and Fe(III) on oxidation of manganese by Pseudomonas putida MnB1 and the bacterial molecular response mechanisms have been studied. The bacterial oxidation of manganese were promoted by both Fe(III) and Cu(II) and the final manganese oxidation rate of the Cu(II) group exceeded 16 % that of the Fe(III) group. The results of transcriptome indicated that Cu(II) promoted manganese oxidation by up-regulating the expression levels of multicopper oxidase (MCO) and peroxidase(POD), and by stimulating electron transfer, while Fe(III) promoted this process by accelerating the electron transfer and nitrogen cycling, and activating POD. The protein-protein interaction (PPI) network indicated that the MCO genes (mnxG and mcoA) were directly linked to the copper homeostasis proteins (cusA, cusB, czcC and cusF). Cytochrome c was closely related to the genes related to nitrogen cycling (glnA, glnL, and putA) and electrons transfer (cycO, cycD, nuoA, nuoK, and nuoL), which also promoted manganese oxidation. This study provides a molecular level insight into the oxidation of Mn(II) by Pseudomonas putida MnB1 with Cu(II) and/or Fe(III) ions.
Collapse
Affiliation(s)
- Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Kaizhong Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaofeng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhumei Sun
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| |
Collapse
|
4
|
Wang X, Zhao Y, Zhang S, Lin X, Liang H, Chen Y, Ji C. Heterologous Expression of the Lactobacillus sakei Multiple Copper Oxidase to Degrade Histamine and Tyramine at Different Environmental Conditions. Foods 2022; 11:3306. [PMCID: PMC9601898 DOI: 10.3390/foods11203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines (BAs) are produced by microbial decarboxylation in various foods. Histamine and tyramine are recognized as the most toxic of all BAs. Applying degrading amine enzymes such as multicopper oxidase (MCO) is considered an effective method to reduce BAs in food systems. This study analyzed the characterization of heterologously expressed MCO from L. sakei LS. Towards the typical substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the optimal temperature and pH for recombinant MCO (rMCO) were 25 °C and 3.0, respectively, with the specific enzyme activity of 1.27 U/mg. Then, the effect of different environmental factors on the degrading activity of MCO towards two kinds of BAs was investigated. The degradation activity of rMCO is independent of exogenous copper and mediators. Additionally, the oxidation ability of rMCO was improved for histamine and tyramine with an increased NaCl concentration. Several food matrices could influence the amine-oxidizing activity of rMCO. Although the histamine-degrading activities of rMCO were affected, this enzyme reached a degradation rate of 28.1% in the presence of surimi. Grape juice improved the tyramine degradation activity of rMCO by up to 31.18%. These characteristics of rMCO indicate that this enzyme would be a good candidate for degrading toxic biogenic amines in food systems.
Collapse
Affiliation(s)
- Xiaofu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yunsong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Sufang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10121-10156 Turin, Italy
| | - Huipeng Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yingxi Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Chaofan Ji
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
- Correspondence: or
| |
Collapse
|
5
|
Ran X, Zhu Z, Long H, Tian Q, You L, Wu X, Liu Q, Huang S, Li S, Niu X, Wang J. Manganese Stress Adaptation Mechanisms of Bacillus safensis Strain ST7 From Mine Soil. Front Microbiol 2021; 12:758889. [PMID: 34899642 PMCID: PMC8656422 DOI: 10.3389/fmicb.2021.758889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanism of bacterial adaption to manganese-polluted environments was explored using 50 manganese-tolerant strains of bacteria isolated from soil of the largest manganese mine in China. Efficiency of manganese removal by the isolated strains was investigated using atomic absorption spectrophotometry. Bacillus safensis strain ST7 was the most effective manganese-oxidizing bacteria among the tested isolates, achieving up to 82% removal at a Mn(II) concentration of 2,200 mg/L. Bacteria-mediated manganese oxide precipitates and high motility were observed, and the growth of strain ST7 was inhibited while its biofilm formation was promoted by the presence of Mn(II). In addition, strain ST7 could grow in the presence of high concentrations of Al(III), Cr(VI), and Fe(III). Genome-wide analysis of the gene expression profile of strain ST7 using the RNA-seq method revealed that 2,580 genes were differently expressed under Mn(II) exposure, and there were more downregulated genes (n = 2,021) than upregulated genes (n = 559) induced by Mn stress. KAAS analysis indicated that these differently expressed genes were mainly enriched in material metabolisms, cellular processes, organism systems, and genetic and environmental information processing pathways. A total of twenty-six genes from the transcriptome of strain ST7 were involved in lignocellulosic degradation. Furthermore, after 15 genes were knocked out by homologous recombination technology, it was observed that the transporters, multicopper oxidase, and proteins involved in sporulation and flagellogenesis contributed to the removal of Mn(II) in strain ST7. In summary, B. safensis ST7 adapted to Mn exposure by changing its metabolism, upregulating cation transporters, inhibiting sporulation and flagellogenesis, and activating an alternative stress-related sigB pathway. This bacterial strain could potentially be used to restore soil polluted by multiple heavy metals and is a candidate to support the consolidated bioprocessing community.
Collapse
Affiliation(s)
- Xueqin Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Zhongmei Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Hong Long
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qun Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Longjiang You
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xingdiao Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shihui Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xi Niu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Jiafu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|