1
|
Chen C, Xu W, Li G, Qu H, Ma C, Zhang H, Bahojb Noruzi E, Cai M, Wang M, Hou X, Li H. Selectively transport and removal of fluoride ion by pillar[5]arene polymer-filled nanochannel membrane. Chemistry 2024:e202303742. [PMID: 38214487 DOI: 10.1002/chem.202303742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Excess fluoride ions in groundwater accumulate through the roots of crops, affecting photosynthesis and inhibiting their growth. Long-term bioaccumulation also threatens human health because it is poorly degradable and toxic. Currently, one of the biggest challenges is developing a unique material that can efficiently remove fluoride ions from the environment. The excellent properties of functionalized pillar[5]arene polymer-filled nanochannel membranes were explored to address this challenge. Constructing a multistage porous nanochannel membrane, consisting of microscale etched nanochannels and nanoscale pillar[5]arene cross-linked polymer voids. A fluoride removal rate of 0.0088 mmol ⋅ L-1 ⋅ min-1 was achieved. Notably, this rate surpassed the rates observed with other control ions by a factor of 6 to 8.8. Our research provides a new direction for developing water fluoride ion removal materials.
Collapse
Affiliation(s)
- Chunxiu Chen
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Weiwei Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Guang Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Haonan Qu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Cuiguang Ma
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Haifan Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Ehsan Bahojb Noruzi
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Meng Cai
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Miao Wang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
- State Key Laboratory of Featured MetaMaterials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
2
|
Zeng Z, Li Q, Yan J, Huang L, Arulmani SRB, Zhang H, Xie S, Sio W. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review. CHEMOSPHERE 2023; 340:139808. [PMID: 37591373 DOI: 10.1016/j.chemosphere.2023.139808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Samuel Raj Babu Arulmani
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenghong Sio
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
3
|
Kiprono P, Kiptoo J, Nyawade E, Ngumba E. Iron functionalized silica particles as an ingenious sorbent for removal of fluoride from water. Sci Rep 2023; 13:8018. [PMID: 37198268 DOI: 10.1038/s41598-023-34357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
The paucity of safe drinking water remains a global concern. Fluoride is a pollutant prevalent in groundwater that has adverse health effects. To resolve this concern, we devised a silica-based defluoridation sorbent from pumice rock obtained from the Paka volcano in Baringo County, Kenya. The alkaline leaching technique was used to extract silica particles from pumice rock, which were subsequently modified with iron to enhance their affinity for fluoride. To assess its efficacy, selected borehole water samples were used. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared and X-ray fluorescence spectroscopy was used to characterize the sorbent. The extracted silica particles were 96.71% pure and amorphous, whereas the iron-functionalized silica particles contained 93.67% SiO2 and 2.93% Fe2O3. The optimal pH, sorbent dose and contact time for defluoridation of a 20 mg/L initial fluoride solution were 6, 1 g and 45 min, respectively. Defluoridation followed pseudo-second-order kinetics and fitted Freundlich's isotherm. Fluoride levels in borehole water decreased dramatically; Intex 4.57-1.13, Kadokoi 2.46-0.54 and Naudo 5.39-1.2 mg/L, indicating that the silica-based sorbent developed from low-cost, abundant and locally available pumice rock is efficient for defluoridation.
Collapse
Affiliation(s)
- Paul Kiprono
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya.
| | - Jackson Kiptoo
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Eunice Nyawade
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Elijah Ngumba
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
4
|
Hu J, Song J, Han X, Wen Q, Yang W, Pan W, Jian S, Jiang S. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: A kinetics, thermodynamics and mechanisms study. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Gao Z, Liu C, Yang W. Application of recurrent neural networks to model the defluoridation process of hydroxyapatite synthesized by simple methods. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Wang T, Yan L, He Y, Alhassan SI, Gang H, Wu B, Jin L, Wang H. Application of polypyrrole-based adsorbents in the removal of fluoride: a review. RSC Adv 2022. [DOI: 10.1039/d1ra08496h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When fluoride levels in water exceed permitted limits (>1.5 mg L−1), water pollution becomes a major concern to humans.
Collapse
Affiliation(s)
- Ting Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Yingjie He
- School of Metallurgy and Environment, Central South University, Changsha, China
| | | | - Haiyin Gang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Linfeng Jin
- School of Material Science and Engineering, Central South University, Changsha, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| |
Collapse
|
7
|
Bioaccumulation of Fluoride in Plants and Its Microbially Assisted Remediation: A Review of Biological Processes and Technological Performance. Processes (Basel) 2021. [DOI: 10.3390/pr9122154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fluoride is widely found in soil–water systems due to anthropogenic and geogenic activities that affect millions worldwide. Fluoride ingestion results in chronic and acute toxicity, including skeletal and dental fluorosis, neurological damage, and bone softening in humans. Therefore, this review paper summarizes biological processes for fluoride remediation, i.e., bioaccumulation in plants and microbially assisted systems. Bioremediation approaches for fluoride removal have recently gained prominence in removing fluoride ions. Plants are vulnerable to fluoride accumulation in soil, and their growth and development can be negatively affected, even with low fluoride content in the soil. The microbial bioremediation processes involve bioaccumulation, biotransformation, and biosorption. Bacterial, fungal, and algal biomass are ecologically efficient bioremediators. Most bioremediation techniques are laboratory-scale based on contaminated solutions; however, treatment of fluoride-contaminated wastewater at an industrial scale is yet to be investigated. Therefore, this review recommends the practical applicability and sustainability of microbial bioremediation of fluoride in different environments.
Collapse
|