1
|
Chen X, Li M, He J, Wu Y, Sun J, Wen X. Waste cotton-based activated carbon with excellent adsorption performance towards dyes and antibiotics. CHEMOSPHERE 2025; 376:144292. [PMID: 40073735 DOI: 10.1016/j.chemosphere.2025.144292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
A novel adsorbent is prepared from waste cotton fiber by a simple pyrolysis-activation process, and it can efficiently adsorb many kinds of organic pollutants (cationic/anionic dyes and antibiotics etc.). The obtained cotton-based activated carbon (CAC) with large specific surface area (3709 m2 g-1) and suitable pore structure provide abundant active sites and fast channels for the adsorption of pollutant molecules. Its saturated adsorption capacities towards methylene blue, Congo Red and tetracycline hydrochloride at room temperature can reach to 2331, 7265 and 1250 mg g-1, respectively. In addition, the optimal sample also exhibits excellent adsorption ability towards Rhodamine B (1327 mg g-1), methyl orange (955 mg g-1) and ciprofloxacin hydrochloride (824 mg g-1). The adsorption involves a multi-process including pore filling, Van der Waals force interaction, electrostatic attraction, hydrogen bond formation, surface complexation and π-π stacking etc. The CAC adsorbent also exhibits excellent resistance to environmental disturbances (pH, coexisting ions and multicomponent systems etc.) and good regeneration/recycling performance. This study develops a high-efficiency biomass-based adsorbent with excellent adsorption performance and application generality, which has great potential in wastewater treatment.
Collapse
Affiliation(s)
- Xi Chen
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ming Li
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jingjing He
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yang Wu
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiahao Sun
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaogang Wen
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
2
|
Tang Z, Xie D, Li S, Huang L. The directions of enhanced activated carbon fibers for iodine capture from humid gas streams: Synergistic mechanisms of microporosity, hydrophobicity, and nitrogen sites. Sep Purif Technol 2025; 354:129032. [DOI: 10.1016/j.seppur.2024.129032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Chen G, Zhang W, Sun F, Qu Z, Hu Y, Li X, Li J, Wang T. Simultaneously enhancing toluene adsorption and regeneration process by hierarchical pore in activated coke: a combined experimental and adsorption kinetic modeling study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39421-39431. [PMID: 38819513 DOI: 10.1007/s11356-024-33843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Activated coke is a type of commonly used adsorbent for benzene series VOCs such as toluene, but traditional microporous activated coke usually faces the challenge of poor regeneration performance. Herein, based on self-made activated cokes with typical pore configuration, we found that adsorption and regeneration of toluene can be simultaneously enhanced by constructing hierarchical pore in activated coke. Correlations of pore configuration with toluene adsorption capacity and regeneration efficiency reveal that micropore contributes for strong toluene adsorption; meso-macropore provides mass transfer channel for toluene desorption and regeneration process. Hierarchical porous activated coke prepared from Zhundong subbituminous coal not only achieves the highest toluene adsorption capacity of 340.92 mg·g-1, but also can retain more than 90% of initial adsorption capacity after five adsorption-regeneration cycles. By contrast, micropore-dominant activated cokes can only retain 70% of initial adsorption capacity. Adsorption kinetic modelling on adsorption breakthrough curves shows that hierarchical porous activated coke prepared from Zhundong subbituminous coal exhibits high adsorption and diffusion rate constants of 14.39 and 33.45 min-1, respectively, much higher than those of micropore-dominant activated cokes. Due to the accelerated surface adsorption and diffusion processes induced by meso-macropore, toluene adsorption and regeneration behavior can be simultaneously improved. Results from this work validated the role of pore hierarchy in toluene adsorption-regeneration process, providing guidance for designing high-performance activated coke with synergistically improved toluene adsorption capacity and regeneration performance.
Collapse
Affiliation(s)
- Guoqing Chen
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co.,Ltd., Nanjing, 210023, People's Republic of China
| | - Wenshuang Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fei Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yun Hu
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co.,Ltd., Nanjing, 210023, People's Republic of China
| | - Xuhan Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Tao Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| |
Collapse
|
4
|
Guo Y, Cao S, Cheng S, Huang X, Ren M. Electro-catalytic adsorption mechanism of acetonitrile in water using a ME-ACFs system. Heliyon 2023; 9:e22190. [PMID: 38045224 PMCID: PMC10689879 DOI: 10.1016/j.heliyon.2023.e22190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Acetonitrile wastewater is difficult to treat due to its high salinity and toxicity to microorganisms. In this paper, a micro electro-activated carbon fiber coupled system (ME-ACF) was established to treat simulated acetonitrile wastewater. In the 200 ml system, the concentration of acetonitrile adsorbed by ACF was 91.3 mg/L, while that of acetonitrile adsorbed by ME-ACF was 150.6 mg/L, and the removal efficiency was increased by 65 % in comparison. The activated carbon fibers before and after the reaction were subjected to a series of characterization, and it was found that the SABET decreased from 1393.48 m2/g to 1114.93 m2/g and 900.23 m2/g, respectively, but the oxygen on the surface of the activated carbon fibers was increased, and the effect of the micro electrolytic system on the activated carbon fibers was then analyzed. The possible reasons for the formation of acetic acid contained in the products were also discussed using DFT simulations. The removal mechanism of acetonitrile by ME-ACF was considered to be electrically enhanced adsorption and electro-catalytic hydrolysis.
Collapse
Affiliation(s)
- Yaping Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuo Cao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | | - Xinhua Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengyao Ren
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Liu J, Li Y, An X, Shen C, Xie Q, Liang D. Activated carbon fiber derived from wasted coal liquefaction residual for CO 2 capture. ENVIRONMENTAL RESEARCH 2022; 215:114197. [PMID: 36058269 DOI: 10.1016/j.envres.2022.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Wasted coal liquefaction residual was used to synthesize activated carbon fibers (ACFs) for CO2 capture, and the properties of the developed ACFs were optimized by adjusting the activation conditions, including the reaction temperature and soaking time. The yield, element distribution, pore structure, composition, functional group, morphology, and adsorption capacity of the as-synthesized ACFs were characterized by various apparatuses. In addition, static and dynamic adsorption experiments were conducted to investigate the adsorption capacity of CO2 in flue gas. The results revealed that the synthesized ACFs are mainly composed of carbon, accounting for more than 90% of the total elements. The specific surface area, pore volume, and pore width distribution of the prepared ACFs were optimized by changing the activation conditions, and ACFs with a specific surface area higher than 1400 m2/g were successfully developed by activation at 950 for 3 h. The amount of micropores occupied more than 90% of the total pore volume. The pore width distribution dominated by micropores is beneficial for CO2 adsorption since the diameter of CO2 is 0.33 nm. From FTIR and XPS analysis, it is found that the main structure of ACFs is a carbon skeleton composed of polycyclic aromatic hydrocarbons with a small number of oxygen-containing functional groups. The adsorption isotherm of ACFs for CO2 conforms to the Langmuir model, indicating that the adsorption process of CO2 by ACFs can be attributed to monolayer adsorption. Both the specific surface area and oxygen-containing functional groups have crucial effects on the adsorption capacity of CO2. The dynamic adsorption experiment determined that ACFs-920-3 had the highest adsorption capacity for CO2 in flue gas, and adsorption equilibrium was achieved after 7 min of adsorption. The adsorption process of CO2 in flue gas by the as-synthesized ACFs fits well with the pseudosecond kinetic model. The CO2 adsorption capacity of the obtained ACFs remained unchanged after 10 cycles of adsorption. A high-value-added route for synthesizing ACFs for CO2 capture using CLR as a raw material was developed.
Collapse
Affiliation(s)
- Jinchang Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Yaping Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xiaoya An
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chenyang Shen
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qiang Xie
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Dingcheng Liang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
6
|
Teng Y, Zhu J, Xiao S, Ma Z, Huang T, Liu Z, Xu Y. Exploring chitosan-loaded activated carbon fiber for the enhanced adsorption of Pb(II)-EDTA complex from electroplating wastewater in batch and continuous processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Isinkaralar K. High-efficiency removal of benzene vapor using activated carbon from Althaea officinalis L. biomass as a lignocellulosic precursor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66728-66740. [PMID: 35507228 DOI: 10.1007/s11356-022-20579-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/28/2022] [Indexed: 05/09/2023]
Abstract
Benzene is a primary air pollutant commonly found widespread in the indoor environment. It has always been a research focus on the environment due to the causes of significant human health concerns. It has been widely utilized in the synthesis of solvent production, which can rarely be found in high concentrations in outdoor air or high amounts in indoor air, depending on its sources. It is aimed to remove different initial benzene concentrations (from 5 to 1500 ppm) with the production of activated carbon as an excellent adsorbent with a high surface area to be used in these situations. Lignocellulosic wastes have great potential for activated carbon for their advantages (abundant, recycled, and low-cost materials, etc.). This study aimed to evaluate biowaste material for activated carbon production from Althaea officinalis L. biomass by chemical activation (H2SO4, LiOH, and ZnCl2) at temperatures between 500 and 900 °C. Newly developed powdered activated carbons (Ao-ACs) are also tabulated as Ao-AC1-45 for easy reference. Benzene vapor was collected into Tenax TA® tubes by automatic thermal desorption in conjunction with a capillary gas chromatography-mass spectrometry (TD-GC/MS). The significant surface area and production yield of Ao-ACs were obtained at 1424 m2/g (Ao-AC43) and up to 40.32%, respectively. The maximum gas-phase benzene adsorption capacity was 140 mg/g at 270 min. This research has focused on adsorption gas-phase benzene removal onto Ao-ACs as a low-cost adsorbent from the Althaea officinalis L. biomass. Conspicuously, more study is needed to perform the enhanced adsorption of airborne pollutants capacity with inexpensive activated carbon from waste biomass materials.
Collapse
Affiliation(s)
- Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|