1
|
Satpati GG, Gupta S, Biswas RK, Choudhury AK, Kim JW, Davoodbasha M. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations. CHEMOSPHERE 2023; 344:140337. [PMID: 37797901 DOI: 10.1016/j.chemosphere.2023.140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive in the atmosphere and are one of the emerging pollutants that cause harmful effects in living systems. There are some natural and anthropogenic sources that can produce PAHs in an uncontrolled way. Several health hazards associated with PAHs like abnormality in the reproductive system, endocrine system as well as immune system have been explained. The mutagenic or carcinogenic effects of hydrocarbons in living systems including algae, vertebrates and invertebrates have been discussed. For controlling PAHs, biodegradation has been suggested as an effective and eco-friendly process. Microalgae-based biosorption and biodegradation resulted in the removal of toxic contaminants. Microalgae both in unialgal form and in consortium (with bacteria or fungi) performed good results in bioaccumulation and biodegradation. In the present review, we highlighted the general information about the PAHs, conventional versus advanced technology for removal. In addition microalgae based removal and toxicity is discussed. Furthermore this work provides an idea on modern scientific applications like genetic and metabolic engineering, nanomaterials-based technologies, artificial neural network (ANN), machine learning (ML) etc. As rapid and effective methods for bioremediation of PAHs. With several pros and cons, biological treatments using microalgae are found to be better for PAH removal than any other conventional technologies.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata- 700009, West Bengal, India.
| | - Shalini Gupta
- University School of Environment and Management, Guru Gobind Singh Indraprastha University, Dwarka, Delhi- 110078, India
| | - Rohan Kr Biswas
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Avik Kumar Choudhury
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Jung-Wan Kim
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - MubarakAli Davoodbasha
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, 10540, Republic of Korea; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
2
|
Hoque MZ, Alqahtani A, Sankaran S, Anand D, Musa MM, Nzila A, Guerriero G, Siddiqui KS, Ahmad I. Enhanced biodegradation of phenanthrene and anthracene using a microalgal-bacterial consortium. Front Microbiol 2023; 14:1227210. [PMID: 37771703 PMCID: PMC10525690 DOI: 10.3389/fmicb.2023.1227210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemicals that are released into the environment during activities of the petroleum industry. The bioaccumulation, carcinogenic and mutagenic potential of PAHs necessitates the bioremediation of these contaminants. However, bioremediation of PAHs has a number of limitations including the inability of a single microbe to degrade all of the PAH fraction's environmental constituents. Therefore, a different paradigm, employing microalgal-bacterial consortium (MBC), may be used to effectively remove PAHs contaminants. In this type of interaction, the microalgae and bacteria species in the consortium work together in a way that enhances the overall performance of the MBC. Bacterial species in the consortium provide essential nutrients or growth factors by degrading toxic substances and provide these to microalgae, while the microalgae species provide organic carbon for the bacterial species to grow. For the first time, the ability of Gonium pectorale (G. pectorale) microalgae to break down phenanthrene (PHE) and anthracene (ANT) was investigated. Phenanthrene was shown to be more effectively degraded by G. pectorale (98%) as compared to Bacillus licheniformis (B. licheniformis) 19%. Similarly, G. pectorale has effectively degrade anthracene (98%) as compared with B. licheniformis (45%). The consortia of G. pectorale and B. licheniformis has shown a slight increase in the degradation of PHE (96%) and ANT (99%). Our findings show that B. licheniformis did not inhibit the growth of G. pectorale and in the consortia has effectively eliminated the PAHs from the media. Therefore G. pectorale has a tremendous potential to remove PAHs from the polluted environment. Future research will be conducted to assess Gonium's capacity to eliminate PAHs that exhibit high molar masses than that of PHE and ANT.
Collapse
Affiliation(s)
- Mubasher Zahir Hoque
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saravanan Sankaran
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Deepak Anand
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Musa M Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Alexis Nzila
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences (BABS), The University of New South Wales, Sydney, NSW, Australia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
3
|
Bisht B, Verma M, Sharma R, Chauhan P, Pant K, Kim H, Vlaskin MS, Kumar V. Development of yeast and microalgae consortium biofilm growth system for biofuel production. Heliyon 2023; 9:e19353. [PMID: 37662773 PMCID: PMC10472003 DOI: 10.1016/j.heliyon.2023.e19353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The current study aimed to develop a laboratory-scale biofilm photobioreactor system for biofuel production. Scope & Approach During the investigation, Jute was discovered to be the best, cheap, hairy, open-pored supporting material for biofilm formation. Microalgae & yeast consortium was used in this study for biofilm formation. Conclusion The study identified microalgae and yeast consortium as a promising choice and ideal partners for biofilm formation with the highest biomass yield (47.63 ± 0.93 g/m2), biomass productivity (4.39 ± 0.29 to 7.77 ± 0.05 g/m2/day) and lipid content (36%) over 28 days cultivation period, resulting in a more sustainable and environmentally benign fuel that could become a reality in the near future.
Collapse
Affiliation(s)
- Bhawna Bisht
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Monu Verma
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Rohit Sharma
- Department of Biotechnology Engineering, University Institute of Engineering, Chandigarh University, Chandigarh, India
| | - P.K. Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mikhail S. Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
- Peoples’ Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation
- Graphic Era Hill University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
4
|
Kumar A, Nighojkar A, Varma P, Prakash NJ, Kandasubramanian B, Zimmermann K, Dixit F. Algal mediated intervention for the retrieval of emerging pollutants from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131568. [PMID: 37187121 DOI: 10.1016/j.jhazmat.2023.131568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Water is a crucial elemental contributor for all sectors; however, the agricultural sector alone accounts for 70% of the world's total water withdrawal. The anthropogenic activity from various industries including agriculture, textiles, plastics, leather, and defence has resulted in the release of contaminants into water systems, resulting harm to the ecosystem and biotic community. Algae-based organic pollutant removal uses several methods, such as biosorption, bioaccumulation, biotransformation, and biodegradation. The adsorption of methylene blue by algal species Chlamydomonas sp. showed a maximum adsorption capacity of 2744.5 mg/g with 96.13% removal efficiency; on the other hand, Isochrysis galbana demonstrated a maximum of 707 µg/g nonylphenol accumulation in the cell with 77% removal efficiency indicating the potential of algal systems as efficient retrieval system for organic contaminants. This paper is a compilation of detailed information about biosorption, bioaccumulation, biotransformation, biodegradation, and their mechanism, along with the genetic alteration of algal biomass. Where the genetic engineering and mutations on algae can be advantageously utilized for the enhancement of removal efficiency without any secondary toxicity.
Collapse
Affiliation(s)
- Alok Kumar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Amrita Nighojkar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Payal Varma
- Microbiology Department, Sinhgad College of Science, Pune 411041, Maharashtra, India
| | - Niranjana Jaya Prakash
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| |
Collapse
|
5
|
Bui TT, Péralta S, Dumur F. Synthesis and Optical Properties of a Series of Push-Pull Dyes Based on Pyrene as the Electron Donor. Molecules 2023; 28:molecules28031489. [PMID: 36771166 PMCID: PMC9920555 DOI: 10.3390/molecules28031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Fifteen push-pull dyes comprising the tetracyclic polyaromatic pyrene have been designed and synthesized. The optical properties of the fifteen dyes have been examined in twenty-two solvents of different polarities. Surprisingly, contrarily to what is classically observed for push-pull dyes of D-π-A structures, a negative solvatochromism could be found for numerous dyes. The photoluminescence and thermal properties of the dyes were also examined. Theoretical calculations were carried out to support the experimental results.
Collapse
Affiliation(s)
| | | | - Frédéric Dumur
- CY Cergy Paris Université, LPPI, F-95000 Cergy, France
- Aix Marseille Univ CNRS, ICR UMR7273, F-13397 Marseille, France
- CY Cergy Paris Université, CY Advanced Studies (CY AS), F-95000 Cergy, France
- Correspondence:
| |
Collapse
|
6
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
7
|
Qiao X, Xia Y, Su X, Wang B, Chen G, Chen H. Preparation of biomass carbon material based on fulvic acid and its application in dye and antibiotic treatments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|