1
|
Alhajeri NS, Tawfik A, Nasr M, Osman AI. Artificial intelligence-enabled optimization of Fe/Zn@biochar photocatalyst for 2,6-dichlorophenol removal from petrochemical wastewater: A techno-economic perspective. CHEMOSPHERE 2024; 352:141476. [PMID: 38382716 DOI: 10.1016/j.chemosphere.2024.141476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
While numerous studies have addressed the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP) in wastewater, an existing research gap pertains to operational factors' optimization by non-linear prediction models to ensure a cost-effective and sustainable process. Herein, we focus on optimizing the photocatalytic degradation of 2,6-DCP using artificial intelligence modeling, aiming at minimizing initial capital outlay and ongoing operational expenses. Hence, Fe/Zn@biochar, a novel material, was synthesized, characterized, and applied to harness the dual capabilities of 2,6-DCP adsorption and degradation. Fe/Zn@biochar exhibited an adsorption energy of -21.858 kJ/mol, effectively capturing the 2,6-DCP molecules. This catalyst accumulated photo-excited electrons, which, upon interaction with adsorbed oxygen and/or dissolved oxygen generated •O2-. The •OH radicals could also be produced from h+ in the Fe/Zn@biochar valence band, cleaving the C-Cl bonds to Cl- ions, dechlorinated byproducts, and phenols. An artificial neural network (ANN) model, with a 4-10-1 topology, "trainlm" training function, and feed-forward back-propagation algorithm, was developed to predict the 2,6-DCP removal efficiency. The ANN prediction accuracy was expressed as R2 = 0.967 and mean squared error = 5.56e-22. The ANN-based optimized condition depicted that over 90% of 2,6-DCP could be eliminated under C0 = 130 mg/L, pH = 2.74, and catalyst dosage = 168 mg/L within ∼4 h. This optimum condition corresponded to a total cost of $7.70/m3, which was cheaper than the price estimated from the unoptimized photocatalytic system by 16%. Hence, the proposed ANN could be employed to enhance the 2,6-DCP photocatalytic degradation process with reduced operational expenses, providing practical and cost-effective solutions for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Nawaf S Alhajeri
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, United Kingdom.
| |
Collapse
|
2
|
Song T, Zhang X, Li J, Xie W, Dong W, Wang H. Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. BIORESOURCE TECHNOLOGY 2023; 379:128823. [PMID: 36871701 DOI: 10.1016/j.biortech.2023.128823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH4+, chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.
Collapse
Affiliation(s)
- Tao Song
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Wanying Xie
- College of Civil Engineering and Architecture, Xinjiang University, Urumqi, Xinjiang 830017, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
3
|
Wan P, Liu Y, Zhang Q, Jiang L, Chen H, Lv W. Enhanced degradation of extracellular polymeric substances by yeast in activated sludge to achieve sludge reduction. BIORESOURCE TECHNOLOGY 2023; 377:128915. [PMID: 36934907 DOI: 10.1016/j.biortech.2023.128915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Candida Tropicalis was used to improve the dewaterability of activated sludge (AS) and reduce its biomass by degrading EPS in AS. The protein, polysaccharide, and hydrophilic amino acids in EPS decreased by 54.50, 29.20, and 61.01%, respectively. Meanwhile, molecular weight distribution indicated that yeast degraded macromolecular organics into small molecular ones. The direct addition of yeast to AS was more conducive to EPS degradation. With the addition of 0.75 g/L of wet yeast cells and 24 h of aeration enhanced the dewaterability of AS. The CST and MLSS decreased by 24.44 and 10.51%, respectively. After 30 days of operation of lab-scale continuous SBRs, the CST and MLSS of AS were reduced by 6.37 ± 2.01 and 3.57 ± 0.52%, respectively. FTIR spectroscopy results showed that some hydrophilic functional groups were reduced. This study provides a new approach for the in-situ reduction of AS in wastewater treatment plant.
Collapse
Affiliation(s)
- Pengfei Wan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Quandi Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Heping Chen
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Wenzhou Lv
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Shi J, Su J, Ali A, Xu L, Yan H, Su L, Qi Z. Newly isolated lysozyme-producing strain Proteus mirabilis sp. SJ25 reduced the waste activated sludge: Performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 358:127392. [PMID: 35640815 DOI: 10.1016/j.biortech.2022.127392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To promote aerobic digestion of sludge, a lysozyme-producing strain was screened and identified as Proteus mirabilis sp. SJ25. The results of response surface methodology (RSM) showed that at the temperature of 30.8 °C, pH of 6.69, and the inoculum amount of 2.81%, the sludge reduced by 26.58%. Compared with the control group, the removal efficiency of suspended solids (SS) from sludge in the experimental group increased by 14.60%, the release of soluble chemical oxygen demand (SCOD) increased by 2.21 times, and the release of intracellular substances increased significantly. Actinobacteriota, Chloroflexi, Proteobacteria, Bacteroidota, and Firmicutes were the main phyla involved in the sludge reduction process. Strain SJ25 enhanced the degradation rate of sludge by releasing lysozyme lysis to lyse bacteria, enhancing the metabolism and membrane transport of carbohydrates and amino acids. This study provides a new perspective in the field of efficient degradation of waste sludge.
Collapse
Affiliation(s)
- Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- Xi'an Yiwei Putai Environmental Protection Co., Ltd., Xi'an 710055, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., Ltd., Xi'an 710055, China
| |
Collapse
|
5
|
Chen Y, Wang J, Zhao YG, Maqbool F, Gao M, Guo L, Ji J, Zhao X, Zhang M. Sulfamethoxazole removal from mariculture wastewater in moving bed biofilm reactor and insight into the changes of antibiotic and resistance genes. CHEMOSPHERE 2022; 298:134327. [PMID: 35304219 DOI: 10.1016/j.chemosphere.2022.134327] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/06/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are widely dosed in mariculture sector, resulting in substantial antibiotics residues. Hence, mariculture wastewater is urgent to be treated before discharging. In this study, the anoxic/oxic moving bed biofilm reactor (A/O-MBBR) was used to treat the wastewater containing sulfamethoxazole (SMX) from mariculture, SMX removal mechanism and the variation of antibiotic-resistant genes (ARGs) were investigated. The results showed that 22%-33% of SMX was removed by the bioreactor, where a small amount of SMX was adsorbed and stored by the extracellular polymers and most of SMX (>80%) was biodegraded in the anoxic tank. Occurrence of nitrate in anoxic condition was conducive to SMX degradation. Pseudomonas, Desulfuromusa, and Methanolobus species, as well as microbial catalase contributed to the SMX biotransformation. Quantitative PCR analysis of ARGs (sul1, sul2 and int1) and mRNA (sul1, sul2) showed that SMX enriched SMX-related ARGs and enhanced the expression of corresponding genes. Most of ARGs finally were discharged with effluent. Hence, the effluent from biologically based processes treating mariculture wastewater still contained antibiotics residue and resistance genes, which should be further controlled by suitable techniques.
Collapse
Affiliation(s)
- Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinpeng Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, 21300, Pakistan
| | - Mengchun Gao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Liang Guo
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Junyuan Ji
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Xuning Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mo Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|