1
|
Zhang Z, Cheng B, Zhang Y. Room-Temperature Operable, Fully Recoverable Ethylene Gas Sensor via Pulsed Electric Field Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500389. [PMID: 40126366 PMCID: PMC12097100 DOI: 10.1002/advs.202500389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Ethylene (C2H4) is an important plant hormone, and its concentration can be used as an essential indicator of fruit quality. However, C2H4 is a non-polar gas with a relatively stable structure, making it challenging to detect and desorb without heating or irradiation. Here, a pulsed electric field modulation mode for non-polar gas detection is proposed, which enables fast and complete recovery of sensors at room temperature. Compared to the nearly impossible desorption without electric field assistance, the recovery time for 9 ppm C2H4 can be reduced to 78 s when the +60 V pulse gate voltage is applied, which is nearly equivalent to the recorded values under heating or irradiation (50 s under 250 °C). Most crucially, with the help of a gate-induced electric field, the sensor achieves complete desorption within 100 s. This work offers a new approach for fast non-polar gas detection at room temperature and on-chip integration of gas sensors.
Collapse
Affiliation(s)
- Zeyu Zhang
- School of Physics and OptoelectronicsXiangtan UniversityXiangtan411105P. R. China
| | - Bolang Cheng
- School of Physics and OptoelectronicsXiangtan UniversityXiangtan411105P. R. China
| | - Yong Zhang
- School of Physics and OptoelectronicsXiangtan UniversityXiangtan411105P. R. China
- Hunan Institute of Advanced Sensing and Information TechnologyXiangtan UniversityXiangtan411105P. R. China
| |
Collapse
|
2
|
Zhan F, Wen G, Li R, Feng C, Liu Y, Liu Y, Zhu M, Zheng Y, Zhao Y, La P. A comprehensive review of oxygen vacancy modified photocatalysts: synthesis, characterization, and applications. Phys Chem Chem Phys 2024; 26:11182-11207. [PMID: 38567530 DOI: 10.1039/d3cp06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Photocatalytic technology is a novel approach that harnesses solar energy for efficient energy conversion and effective pollution abatement, representing a rapidly advancing field in recent years. The development and synthesis of high-performance semiconductor photocatalysts constitute the pivotal focal point. Oxygen vacancies, being intrinsic defects commonly found in metal oxides, are extensively present within the lattice of semiconductor photocatalytic materials exhibiting non-stoichiometric ratios. Consequently, they have garnered significant attention in the field of photocatalysis as an exceptionally effective means for modulating the performance of photocatalysts. This paper provides a comprehensive review on the concept, preparation, and characterization methods of oxygen vacancies, along with their diverse applications in nitrogen fixation, solar water splitting, CO2 photoreduction, pollutant degradation, and biomedicine. Currently, remarkable progress has been made in the synthesis of high-performance oxygen vacancy photocatalysts and the regulation of their catalytic performance. In the future, it will be imperative to develop more advanced in situ characterization techniques, conduct further investigations into the regulation and stabilization of oxygen vacancies in photocatalysts, and comprehensively comprehend the mechanism underlying the influence of oxygen vacancies on photocatalysis. The engineering of oxygen vacancies will assume a pivotal role in the realm of semiconductor photocatalysis.
Collapse
Affiliation(s)
- Faqi Zhan
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Guochang Wen
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Ruixin Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Chenchen Feng
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yisi Liu
- Institute of Advanced Materials, Hubei Normal University, Huangshi, 415000, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Min Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yuehong Zheng
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yanchun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Peiqing La
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
3
|
Jia X, Du Y, Xie F, Li H, Zhang M. Enhancing Electron/Ion Transport in SnO 2 Quantum Dots Decorated Polyaniline/Graphene Hybrid Fibers for Wearable Supercapacitors with High Energy Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17937-17945. [PMID: 38530251 DOI: 10.1021/acsami.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fiber-based supercapacitors are the potential power sources in the field of wearable electronics and energy storage textiles due to their unique advantages of electrochemical properties and mechanical flexibility, but achieving high energy density and practical energy supply still presents some challenges. In this study, we reported an approach of microfluidic assisted wet-spinning to fabricate SnO2 quantum dots encapsulated polyaniline/graphene hybrid fibers (SnO2 QDs@PGF) by incorporating uniformly polyaniline into graphene fibers and covalently bridging SnO2 quantum dots. The assembled SnO2 QDs@PGF fiber-typed flexible supercapacitors exhibit an ultralarge specific areal capacitance of 925 mF cm-2 in PVA/H2SO4, superior rate capabilities, and capacitance retention of 88% after 8000 cycles, indicating that the SnO2 QDs@PGF possess near-ideal capacitance properties, efficient ion transfer rate, and good cycling stability. In the EMITFSI/PVDF-HFP electrolyte system, SnO2 QDs@PGF realize a wide operating potential window of 2.5 V, a specific areal capacitance of 678.4 mF cm-2, and an energy density of 147.2 μWh cm-2 at 500 μW cm-2, which can be utilized to power an alarm clock, an electronic timer, and a desk lamp with a requirement of a 3 V battery. The exceptional performance of the SnO2 QDs@PGF can be attributed to the molecular-level homogeneous composite of granular polyaniline and graphene nanosheets and the interfacial C-O-Sn covalent coupling strategy employed between SnO2 QDs and PGF. These avenues not only effectively prevent the undesirable restacking of graphene nanosheets but also increase the interlayer electroactive sites, ordered ion diffusion channels, and strong interfacial charge transfer.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yuan Du
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Fanyu Xie
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Hongwei Li
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Mei Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
4
|
Wang M, Li L, Liu Z, Wu F, Jin H, Wang Y. Nanorod-like Bimetallic Oxide for Enhancing the Performance of Supercapacitor Electrodes. ACS OMEGA 2024; 9:16118-16127. [PMID: 38617627 PMCID: PMC11007860 DOI: 10.1021/acsomega.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Supercapacitors are widely used in many fields owing to their advantages, such as high power, good cycle performance, and fast charging speed. Among the many metal-oxide cathode materials reported for supercapacitors, NiMoO4 is currently the most promising electrode material for high-specific-energy supercapacitors. We have employed a rational design approach to create a nanorod-like NiMoO4 structure, which serves as a conductive scaffold for supercapacitors; the straightforward layout has led to outstanding results, with nanorod-shaped NiMoO4 exhibiting a remarkable capacity of 424.8 F g-1 at 1 A g-1 and an impressive stability of 80.2% capacity preservation even after 3500 cycles, which surpasses those of the majority of previously reported NiMoO4 materials. NiMoO4//AC supercapacitors demonstrate a remarkable energy density of 46.31 W h kg-1 and a power density of 0.75 kW kg-1. This synthesis strategy provides a facile method for the fabrication of bimetallic oxide materials for high-performance supercapacitors.
Collapse
Affiliation(s)
- Meilong Wang
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linsong Li
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zhentao Liu
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Fuzhong Wu
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Huixin Jin
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yi Wang
- College
of Chemistry and Material Engineering, Guiyang
University, Guiyang, Guizhou 550005, PR China
| |
Collapse
|
5
|
Nadikatla SK, Chintada VB, Gurugubelli TR, Koutavarapu R. Review of Recent Developments in the Fabrication of ZnO/CdS Heterostructure Photocatalysts for Degradation of Organic Pollutants and Hydrogen Production. Molecules 2023; 28:molecules28114277. [PMID: 37298752 DOI: 10.3390/molecules28114277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Researchers have recently paid a lot of attention to semiconductor photocatalysts, especially ZnO-based heterostructures. Due to its availability, robustness, and biocompatibility, ZnO is a widely researched material in the fields of photocatalysis and energy storage. It is also environmentally beneficial. However, the wide bandgap energy and quick recombination of the photoinduced electron-hole pairs of ZnO limit its practical utility. To address these issues, many techniques have been used, such as the doping of metal ions and the creation of binary or ternary composites. Recent studies showed that ZnO/CdS heterostructures outperformed bare ZnO and CdS nanostructures in terms of photocatalytic performance when exposed to visible light. This review largely concentrated on the ZnO/CdS heterostructure production process and its possible applications including the degradation of organic pollutants and hydrogen evaluation. The importance of synthesis techniques such as bandgap engineering and controlled morphology was highlighted. In addition, the prospective uses of ZnO/CdS heterostructures in the realm of photocatalysis and the conceivable photodegradation mechanism were examined. Lastly, ZnO/CdS heterostructures' challenges and prospects for the future have been discussed.
Collapse
Affiliation(s)
- Santhosh Kumar Nadikatla
- Chemistry Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Vinod Babu Chintada
- Department of Mechanical Engineering, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Thirumala Rao Gurugubelli
- Physics Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Template-Assisted SnO2: Synthesis, Composition, and Photoelectrocatalytical Properties. Catalysts 2023. [DOI: 10.3390/catal13010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A series of tin oxides were synthesized with polystyrene microspheres (250 nm) as the template. It was shown that an increase in the template content led to increasing specific pore volume and to the formation of bimodal pore structure with pores of 9 and 70 nm in diameter. Addition of cetyltrimethylammonium bromide (CTAB) during synthesis led to the formation of friable structures (SEM data), to an increase in the average pore diameter from 19 to 111 nm, and to the formation of macropores of 80–400 nm in size. All materials had similar surface properties and cassiterite structure with 5.9–10.8 nm coherent scattering region (XRD data). Flat-band potentials of the samples were determined and their photoelectrocatalytic properties to oxidation of water and methanol were studied in the potential range of 0.4–1.6 V RHE. It was shown that the sample obtained using CTAB was characterized by lower flat-band potential value, but appeared significantly higher photocurrent in methanol oxidation, which resulted from enhanced macro-meso-porous structure to facilitate methanol pore diffusion.
Collapse
|
7
|
Safari M, Mazloom J, Boustani K, Monemdjou A. Hierarchical Fe 2O 3 hexagonal nanoplatelets anchored on SnO 2 nanofibers for high-performance asymmetric supercapacitor device. Sci Rep 2022; 12:14919. [PMID: 36056049 PMCID: PMC9440100 DOI: 10.1038/s41598-022-18840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Metal oxide heterostructures have gained huge attention in the energy storage applications due to their outstanding properties compared to pristine metal oxides. Herein, magnetic Fe2O3@SnO2 heterostructures were synthesized by the sol-gel electrospinning method at calcination temperatures of 450 and 600 °C. XRD line profile analysis indicated that fraction of tetragonal tin oxide phase compared to rhombohedral hematite was enhanced by increasing calcination temperature. FESEM images revealed that hexagonal nanoplatelets of Fe2O3 were hierarchically anchored on SnO2 hollow nanofibers. Optical band gap of heterogeneous structures was increased from 2.06 to 2.40 eV by calcination process. Vibrating sample magnetometer analysis demonstrated that increasing calcination temperature of the samples reduces saturation magnetization from 2.32 to 0.92 emu g-1. The Fe2O3@SnO2-450 and Fe2O3@SnO2-600 nanofibers as active materials coated onto Ni foams (NF) and their electrochemical performance were evaluated in three and two-electrode configurations in 3 M KOH electrolyte solution. Fe2O3@SnO2-600/NF electrode exhibits a high specific capacitance of 562.3 F g-1 at a current density of 1 A g-1 and good cycling stability with 92.8% capacitance retention at a high current density of 10 A g-1 after 3000 cycles in three-electrode system. The assembled Fe2O3@SnO2-600//activated carbon asymmetric supercapacitor device delivers a maximum energy density of 50.2 Wh kg-1 at a power density of 650 W kg-1. The results display that the Fe2O3@SnO2-600 can be a promising electrode material in supercapacitor applications.
Collapse
Affiliation(s)
- Morteza Safari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran.
| | - Komail Boustani
- Department of Physics, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Ali Monemdjou
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| |
Collapse
|