1
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Kang HG, Jeong PS, Kim MJ, Joo YE, Gwon MA, Jeon SB, Song BS, Kim SU, Lee S, Sim BW. Arsenic exposure during porcine oocyte maturation negatively affects embryonic development by triggering oxidative stress-induced mitochondrial dysfunction and apoptosis. Toxicology 2022; 480:153314. [PMID: 36084880 DOI: 10.1016/j.tox.2022.153314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022]
Abstract
Arsenic (AS), an environmental contaminant, is a known human carcinogen that can cause cancer of the lung, liver, and skin. Furthermore, AS induces oxidative stress and mitochondrial impairments in mammalian cells. However, limited information is available on the effect of AS exposure on oocyte maturation of porcine, whose anatomy, physiology, and metabolism are similar to those of human. Therefore, we examined the effect of AS exposure on the in vitro maturation (IVM) of porcine oocytes and the possible underlying mechanisms. Cumulus-cell enclosed oocytes were cultured with or without AS for maturation, and then were used for analyses. This study indicated that AS under a concentration of 1 μM significantly increased the abnormal expansion of cumulus cells and the number of oocytes maintained in meiotic arrest. In addition, AS exposure significantly reduced subsequent development of embryos and increased the rate of apoptosis of blastocysts following parthenogenetic activation (PA) and in vitro fertilization (IVF). Moreover, AS exposure induced oxidative stress with increased reactive oxygen species (ROS), and decreased glutathione (GSH), leading to reduced mitochondrial membrane potential, mitochondrial quantity, DNA damage, excessive autophagy activity, and early apoptosis in porcine oocytes. Taken together, the results demonstrated that AS exposure exerts several negative effects, such as meiotic defects and embryo developmental arrest by causing mitochondrial dysfunction and apoptosis via inducing oxidative stress.
Collapse
Affiliation(s)
- Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea; Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea
| | - Ye Eun Joo
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea
| | - Min-Ah Gwon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea; Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea.
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, South Korea.
| |
Collapse
|
3
|
Yao S, Zhou Q, Yang M, Li Y, Jin X, Guo Q, Yang L, Qin F, Lei B. Multi-mtDNA Variants May Be a Factor Contributing to Mitochondrial Function Variety in the Skin-Derived Fibroblasts of Leber's Hereditary Optic Neuropathy Patients. Front Mol Neurosci 2022; 15:920221. [PMID: 35909448 PMCID: PMC9326446 DOI: 10.3389/fnmol.2022.920221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
Heterogeneity is a major feature of Leber's hereditary optic neuropathy (LHON) and has a significant impact on the manifestation and diagnosis of the disease. This study explored whether multiple variations in mitochondrial genes were associated with the heterogeneity, mainly phenotypic heterogeneity. Ophthalmic examinations were conducted in two probands with LHON with G11778A and multiple mitochondrial DNA gene (mtDNA) variants. Skin fibroblast cell lines were generated from patients and age- and sex-matched controls. ROS levels, mitochondrial membrane potential, cell energy respiration, and metabolic functions were measured. Flow cytometry and cell viability tests were performed to evaluate the cell apoptosis levels and fate. We found that cells with more mtDNA variants had higher ROS levels, lower mitochondrial membrane potential, and weaker respiratory function. Flow cytometry and cell viability testing showed that multiple mtDNA variants are associated with different levels of cell viability and apoptosis. In conclusion, we found that skin-derived fibroblast cells from G11778A LHON patients could be used as models for LHON research. Multi-mtDNA variants contribute to mitochondrial function variety, which may be associated with heterogeneity in patients with LHON.
Collapse
Affiliation(s)
- Shun Yao
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qingru Zhou
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingzhu Yang
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiuxiu Jin
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qingge Guo
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lin Yang
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bo Lei
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Bo Lei
| |
Collapse
|