1
|
Maghsoudian S, Yektakasmaei MP, Shaabani A, Perseh S, Fatahi Y, Nouri Z, Gholami M, Sayyari N, Hoseinzadeh HA, Motasadizadeh H, Dinarvand R. Synergistic effects of doxorubicin loaded silk fibroin nanoparticles and Cu-TiO 2 nanoparticles for local chemo-sonodynamic therapy against breast cancer. Int J Biol Macromol 2025; 289:138910. [PMID: 39701260 DOI: 10.1016/j.ijbiomac.2024.138910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
A promising new approach to mitigate the adverse effects of chemotherapeutic drugs on healthy tissues involves combining sonodynamic therapy with topical chemotherapy to enhance the therapeutic efficacy of anticancer drugs. In this study, we introduce a multi-functional in situ chitosan hydrogel (CS) containing silk fibroin nanoparticles (SFNPs) loaded with doxorubicin (DOXSFNPs) and CuO/TiO2 nanoparticles (CTNPs) for combination therapy. The developed DOXSFNPs exhibited a size of 257 ± 6 nm, a zeta potential of -14.3 ± 1.8 mV, and a high loading capacity of 12.38 ± 1.73 %. The pH-dependent controlled release of DOX from DOXSF2/CS2 was observed to be more pronounced than that from DOX/CS2. MTT results indicated dose-dependent toxicity of CT/CS2 in response to ultrasaound radiation (US). Our findings revealed a 1.83-fold increase in reactive oxygen species (ROS) production with therapy, with the IC50 of CT3-DOXSF2/CS2-US showing a 58 % reduction compared to CT3/DOXSF2/CS2. In vivo outcomes and histopathological staining demonstrated that the CT3/DOXSF2/CS2-US treatment group exhibited the highest tumor growth inhibition rate, reaching approximately 83.65 %. These findings underscore the potential of this approach in minimizing the adverse effects of chemotherapy while maximizing therapeutic outcomes, offering a valuable contribution to the field of cancer therapy.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Science Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Sayyari
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hesam Aldin Hoseinzadeh
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
2
|
Pourmadadi M, Aghababaei N, Abdouss M. Photocatalytic activation of peroxydisulfate by UV-LED through rGO/g-C 3N 4/SiO 2 nanocomposite for ciprofloxacin removal: Mineralization, toxicity, degradation pathways, and application for real matrix. CHEMOSPHERE 2024; 359:142374. [PMID: 38763393 DOI: 10.1016/j.chemosphere.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
If trace amounts of antibiotics remain in the environment, they can lead to microbial pathogens becoming resistant to antibiotics and putting ecosystem health at risk. For instance, ciprofloxacin (CIP) can be found in surface and ground waters, suggesting that conventional water treatment technologies are ineffective at removing it. Now, a rGO/g-C3N4/SiO2 nanocomposite was synthesized in this study to activate peroxydisulfate (PDS) under UVA-LED irradiation. UVA-LED/rGO-g-C3N4-SiO2/PDS system performance was evaluated using Ciprofloxacin as an antibiotic. Particularly, rGO/g-C3N4/SiO2 showed superior catalytic activity for PDS activation to remove CIP. Operational variables, reactive species determination, and mechanisms were investigated. 0.85 mM PDS and 0.3 g/L rGO/g-C3N4/SiO2 eliminated 99.63% of CIP in 35 min and mineralized 59.78% in 100 min at pH = 6.18. By scavenging free radicals, bicarbonate ions inhibit CIP degradation. According to the trapping experiments, superoxide (O2•-) was the main active species rather than sulfate (SO4•-) and hydroxyl radicals (•OH). RGO/g-C3N4/SiO2 showed an excellent recyclable capability of up to six cycles. The UVA-LED/rGO-g-C3N4-SiO2/PDS system was also tested under real conditions. The system efficiency was reasonable. By calculating the synergistic factor (SF), this work highlights the benefit of combining composite, UVA-LED, and PDS. UVA-LED/rGO-g-C3N4-SiO2/PDS had also been predicted to be an eco-friendly process based on the results of the ECOSAR program. Consequently, this study provides a novel and durable nanocomposite with supreme thermal stability that effectively mitigates environmental contamination by eliminating antibiotics from wastewater.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Nafiseh Aghababaei
- Department of Chemical Engineering, Tafresh University, Tafresh, 39518 79611, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| |
Collapse
|
3
|
Samadi MT, Rezaie A, Ebrahimi AA, Hossein Panahi A, Kargarian K, Abdipour H. The utility of ultraviolet beam in advanced oxidation-reduction processes: a review on the mechanism of processes and possible production free radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6628-6648. [PMID: 38153574 DOI: 10.1007/s11356-023-31572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are a set of chemical treatment procedures designed to eliminate organic (sometimes inorganic) contamination in water and wastewater by producing free reactive radicals (FRR). UV irradiation is one of the factors that are effectively used in oxidation-reduction processes. Not only does the UV beam cause the photolysis of contamination, but it also leads to the product of FRR by affecting oxidants-reductant, and the pollutant decomposition occurs by FRR. UV rays produce active radical species indirectly in an advanced redox process by affecting an oxidant (O3, H2O2), persulfate (PS), or reducer (dithionite, sulfite, sulfide, iodide, ferrous). Produced FRR with high redox potential (including oxidized or reduced radicals) causes detoxification and degradation of target contaminants by attacking them. In this review, it was found that ultraviolet radiation is one of the important and practical parameters in redox processes, which can be used to control a wide range of impurities.
Collapse
Affiliation(s)
- Mohammad Taghi Samadi
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezo Rezaie
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ayat Hossein Panahi
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Kiana Kargarian
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Abdipour
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
A V M, K A, I BM. An integrated approach to remove endocrine-disrupting chemicals bisphenol and its analogues from the aqueous environment: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1518-1546. [PMID: 37768753 PMCID: wst_2023_280 DOI: 10.2166/wst.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) used as a plastic enhancer in producing polycarbonate resins to manufacture hard plastics. Due to strict limitations on the manufacturing and utilization of BPA, several bisphenol substitutes, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF), have been developed to replace it in various applications. Because of their widespread use in food containers, infant bottles, and reusable water bottles, bisphenols (BPs) have been identified in different environmental circumstances, including drinking water, seawater, industrial effluent, and endocrine systems such as human blood, urine, and breast milk. However, locating and analyzing them in different conditions has proven to be challenging. Therefore, there is a need to reduce the prevalence of BPs in the environment. The significance of advanced treatment options for treating and eliminating BPA and its alternatives from water bodies are reviewed. Also, the research gaps and future scopes are discussed in this review article. According to the literature survey, adsorption and photocatalytic degradation provide synergistic benefits for environmental challenges because of their substantial adsorption Q5 capacity, high oxidation capability, and low cost compared to alternative individual treatment options.
Collapse
Affiliation(s)
- Monica A V
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India E-mail:
| | - Anbalagan K
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Becky Miriyam I
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
5
|
Singh P, Mohan B, Madaan V, Ranga R, Kumari P, Kumar S, Bhankar V, Kumar P, Kumar K. Nanomaterials photocatalytic activities for waste water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69294-69326. [PMID: 35978242 DOI: 10.1007/s11356-022-22550-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Water is necessary for the survival of life on Earth. A wide range of pollutants has contaminated water resources in the last few decades. The presence of contaminants incredibly different dyes in waste, potable, and surface water is hazardous to environmental and human health. Different types of dyes are the principal contaminants in water that need sudden attention because of their widespread domestic and industrial use. The toxic effects of these dyes and their ability to resist traditional water treatment procedures have inspired the researcher to develop an eco-friendly method that could effectively and efficiently degrade these toxic contaminants. Here, in this review, we explored the effective and economical methods of metal-based nanomaterials photocatalytic degradation for successfully removing dyes from wastewater. This study provides a tool for protecting the environment and human health. In addition, the insights into the transformation of solar energy for photocatalytic reduction of toxic metal ions and photocatalytic degradation of dyes contaminated wastewater will open a gate for water treatment research. The mechanism of photocatalytic degradation and the parameters that affect the photocatalytic activities of various photocatalysts have also been reported.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, 361021, China
| | - Vasundhara Madaan
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Rohit Ranga
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parveen Kumari
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
6
|
González-González RB, Rodríguez-Hernández JA, Araújo RG, Sharma P, Parra-Saldívar R, Ramirez-Mendoza RA, Bilal M, Iqbal HMN. Prospecting carbon-based nanomaterials for the treatment and degradation of endocrine-disrupting pollutants. CHEMOSPHERE 2022; 297:134172. [PMID: 35248594 DOI: 10.1016/j.chemosphere.2022.134172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in water resources has significant negative implications for the environment. Traditional technologies implemented for water treatment are not completely efficient for removing EDCs from water. Therefore, research on sustainable remediation has been mainly directed to novel decontamination approaches including nano-remediation. This emerging technology employs engineered nanomaterials to clean up the environment quickly, efficiently, and sustainably. Thus, nanomaterials have contributed to a wide variety of remediation techniques like adsorption, filtration, coagulation/flocculation, and so on. Among the vast diversity of decontamination technologies catalytic advanced oxidation processes (AOPs) outstand as simple, clean, and efficient alternatives. A vast diversity of catalysts has been developed demonstrating high efficiencies; however, the search for novel catalysts with enhanced performances continues. In this regard, nanomaterials used as nanocatalysts are exhibiting enhanced performances on AOPs due to their special nanostructures and larger specific surface areas. Therefore, in this review we summarize, compare, and discuss the recent advances on nanocatalysts, catalysts doped with metal-based nanomaterials, and catalysts doped with carbon-based nanomaterials on the degradation of EDCs. Finally, further research opportunities are identified and discussed to achieve the real application of nanomaterials to efficiently degrade EDCs from water resources.
Collapse
Affiliation(s)
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, 226 025, Uttar Pradesh, India
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|