1
|
Tang Y, Jiang B, Zhu T, Sun Z. Novel CoFe-supported UiO-66-derived ZrO 2 for rapid activation of peracetic acid for sulfamethoxazole degradation. ENVIRONMENTAL RESEARCH 2025; 274:121329. [PMID: 40057109 DOI: 10.1016/j.envres.2025.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
The leaching of toxic metals is still problematic for heterogeneous metal catalysts in activating peracetic acid (PAA). Herein, CoFe/U-ZrO2 was synthesized by loading CoFe onto the metal-organic framework (UiO-66) derived ZrO2 (U-ZrO2) for PAA activation. The high porosity and specific surface area of UiO-66 enable efficient embedding and uniform dispersion of CoFe particles into pore channels. The supported material effectively activates PAA and significantly reduces Co leaching. CoFe/U-ZrO2-PAA system shows a removal efficiency of sulfamethoxazole reaching 98.9% within 10 min with Co leaching concentrations as low as 0.005 mg/L (equivalent to 1.4% of CoFe-PAA system). Quenching experiments, probe experiments and electron paramagnetic resonance tests identify CH3C(O)OO· as the dominant radical species. The CoFe/U-ZrO2-PAA system maintains high activity in actual water bodies and can resist the interference of HPO42-, Cl-, SO42-, NO3- and humic acid except for the inhibitory effect of HCO3-. The system also displays good stability and high degradability to different pollutants, maintaining consistently outstanding degradation efficiency in the flow-through experiment. Overall, the environmentally friendly, good efficiency, and high stability of the CoFe/U-ZrO2-PAA system makes it potential for broad applications in wastewater treatment.
Collapse
Affiliation(s)
- Yanfei Tang
- Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Bingyu Jiang
- Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Tong Zhu
- Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
2
|
Xie J, Hu S, Wei M, Xie S. Degradation Efficiency and Mechanism Exploration of an Fe 78Si 9B 13 Metallic Glass Cathode in the Electro-Fenton Degradation of p-NP. MATERIALS (BASEL, SWITZERLAND) 2025; 18:930. [PMID: 40077153 PMCID: PMC11901298 DOI: 10.3390/ma18050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Fe-based metallic glass (MG) exhibits excellent performance as a heterogeneous catalyst in degradation but is rarely used as a working electrode in electro-Fenton (EF) systems. We used Fe78Si9B13 MG as the working electrode to investigate the effect of the EF process on the degradation efficiency of p-nitrophenol (p-NP). The EF system had the highest catalytic efficiency (the reaction rate was 3.4 times that of chemical degradation) at a voltage of -1 V (vs. SCE) and showed 95.6% degradation of p-NP within 30 min. The electrode voltage accelerated the generation of hydroxyl radicals (·OH) in the system, thus promoting pollutant degradation. In addition, the Fe78Si9B13 MG cathode demonstrated good structural stability and reusability after 10 cycles. Fe78Si9B13 MG ribbons can serve as a suitable cathode material and provide potential optimization solutions for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Jiatao Xie
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Shengkang Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Engineering Laboratory for Advanced Technology of Ceramic, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Mengyuan Wei
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Engineering Laboratory for Advanced Technology of Ceramic, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Shenghui Xie
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Engineering Laboratory for Advanced Technology of Ceramic, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
3
|
Liu Y, Li Z, Gao Y, Wang C, Wang X, Wang X, Xue X, Wang K, Cui W, Gao F, He S, Wu Z, Qi F, Gan J, Wang Y, Zheng W, Yang Y, Chen J, Pan H. Recent Advances in Understanding of the Singlet Oxygen in Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311500. [PMID: 38372501 DOI: 10.1002/smll.202311500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (term symbol 1Δg, hereafter 1O2), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1O2 in particular aprotic lithium-oxygen (Li-O2) batteries are highlighted, and the applications of 1O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1O2 in energy conversion and storage systems are discussed.
Collapse
Affiliation(s)
- Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Chenxing Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xin Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xu Xue
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ke Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wengang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhijun Wu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fulai Qi
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Jiantuo Gan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yujing Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenjun Zheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Zheng Y, Yang J, Li M, Zhu Y, Liang J, Yu D, Wang Z, Pei J. Mechanistic insight into the degradation of sulfadiazine by electro-Fenton system: Role of different reactive species. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134063. [PMID: 38508112 DOI: 10.1016/j.jhazmat.2024.134063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Sulfadiazine (SDZ), a widely used effective antibiotic, is resistant to conventional biological treatment, which is concerning since untreated SDZ discharge can pose a significant environmental risk. Electro-Fenton (EF) technology is a promising advanced oxidation technology for efficiently removing SDZ. However, due to the limitations of traditional experimental methods, there is a lack of in-depth study on the mechanism of ·OH-dominated SDZ degradation in EF process. In this study, an EF system was established for SDZ degradation and the transformation products (TPs) were detected by mass spectrometry. Dynamic thermodynamic, kinetic and wave function analysis of reactants, transition states and intermediates were proposed by density functional theory calculations, which was applied to elucidate the underlying mechanism of SDZ degradation. Experimental results showed that amino, benzene, and pyrimidine sites in SDZ were oxidized by ·OH, producing TPs through hydrogen abstraction and addition reactions. ·OH was kinetically more likely to attack SDZ- than SDZ. Fe(IV) dominated the single-electron transfer oxidation reaction of SDZ, and the formed organic radicals can spontaneously generate the de-SO2 product via Smiles rearrangement. Toxicity experiments showed the toxicity of SDZ and TPs can be greatly reduced. The results of this study promote the understanding of SDZ degradation mechanism in-depth. ENVIRONMENTAL IMPLICATION: Sulfadiazine (SDZ) is one of the antibiotics widely used around the world. However, it has posed a significant environmental risk due to its overuse and cannot be efficiently removed by traditional treatment methods. The lack of in-depth study on SDZ degradation mechanism under reactive species limits the improvement of SDZ degradation efficiency. Therefore, this work focused on SDZ degradation mechanism in-depth under electro-Fenton system through reactive species investigation, mass spectrometry analysis, and theoretical calculation. The results in this study can provide a theoretical basis for improving the SDZ degradation efficiency which will contribute to solving SDZ pollution problems.
Collapse
Affiliation(s)
- Yanshi Zheng
- School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Jinyan Yang
- School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Mei Li
- School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yingshi Zhu
- Office of Scitech Research, Zhejiang Environment Technology Co., Ltd., Hangzhou 311100, People's Republic of China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiayu Liang
- School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Dehai Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Ziyao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Jianchuan Pei
- School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
5
|
Taqieddin A, Sarrouf S, Ehsan MF, Alshawabkeh AN. New Insights on Designing the Next-Generation Materials for Electrochemical Synthesis of Reactive Oxidative Species Towards Efficient and Scalable Water Treatment: A Review and Perspectives. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:111384. [PMID: 38186676 PMCID: PMC10769459 DOI: 10.1016/j.jece.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrochemical water remediation technologies offer several advantages and flexibility for water treatment and degradation of contaminants. These technologies generate reactive oxidative species (ROS) that degrade pollutants. For the implementation of these technologies at an industrial scale, efficient, scalable, and cost-effective in-situ ROS synthesis is necessary to degrade complex pollutant mixtures, treat large amount of contaminated water, and clean water in a reasonable amount of time and cost. These targets are directly dependent on the materials used to generate the ROS, such as electrodes and catalysts. Here, we review the key design aspects of electrocatalytic materials for efficient in-situ ROS generation. We present a mechanistic understanding of ROS generation, including their reaction pathways, and integrate this with the key design considerations of the materials and the overall electrochemical reactor/cell. This involves tunning the interfacial interactions between the electrolyte and electrode which can enhance the ROS generation rate up to ~ 40% as discussed in this review. We also summarized the current and emerging materials for water remediation cells and created a structured dataset of about 500 electrodes and 130 catalysts used for ROS generation and water treatment. A perspective on accelerating the discovery and designing of the next generation electrocatalytic materials is discussed through the application of integrated experimental and computational workflows. Overall, this article provides a comprehensive review and perspectives on designing and discovering materials for ROS synthesis, which are critical not only for successful implementation of electrochemical water remediation technologies but also for other electrochemical applications.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115
| | - Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
6
|
Farissi S, Abubakar GA, Akhilghosh KA, Muthukumar A, Muthuchamy M. Sustainable application of electrocatalytic and photo-electrocatalytic oxidation systems for water and wastewater treatment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1447. [PMID: 37945768 DOI: 10.1007/s10661-023-12083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Wastewater treatment and reuse have risen as a solution to the water crisis plaguing the world. Global warming-induced climate change, population explosion and fast depletion of groundwater resources are going to exacerbate the present global water problems for the forthcoming future. In this scenario, advanced electrochemical oxidation process (EAOP) utilising electrocatalytic (EC) and photoelectrocatalytic (PEC) technologies have caught hold of the interest of the scientific community. The interest stems from the global water management plans to scale down centralised water and wastewater treatment systems to decentralised and semicentralised treatment systems for better usage efficiency and less resource wastage. In an age of rising water pollution caused by contaminants of emerging concern (CECs), EC and PEC systems were found to be capable of optimal mineralisation of these pollutants rendering them environmentally benign. The present review treads into the conventional electrochemical treatment systems to identify their drawbacks and analyses the scope of the EC and PEC to mitigate them. Probable electrode materials, potential catalysts and optimal operational conditions for such applications were also examined. The review also discusses the possible retrospective application of EC and PEC as point-of-use and point-of-entry treatment systems during the transition from conventional centralised systems to decentralised and semi-centralised water and wastewater treatment systems.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Gado Abubakar Abubakar
- Department of Physics, Kebbi State University of Science and Technology, Aleiro, Kebbi State, Nigeria
| | | | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India.
| |
Collapse
|
7
|
Ramírez-Valencia LD, Bailón-García E, Moral-Rodríguez AI, Carrasco-Marín F, Pérez-Cadenas AF. Carbon Gels-Green Graphene Composites as Metal-Free Bifunctional Electro-Fenton Catalysts. Gels 2023; 9:665. [PMID: 37623120 PMCID: PMC10454076 DOI: 10.3390/gels9080665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The Electro-Fenton (EF) process has emerged as a promising technology for pollutant removal. However, the EF process requires the use of two catalysts: one acting as an electrocatalyst for the reduction of oxygen to H2O2 and another Fenton-type catalyst for the generation of ·OH radicals from H2O2. Thus, the search for materials with bifunctionality for both processes is required for a practical and real application of the EF process. Thus, in this work, bifunctional electrocatalysts were obtained via doping carbon microspheres with Eco-graphene, a form of graphene produced using eco-friendly methods. The incorporation of Eco-graphene offers numerous advantages to the catalysts, including enhanced conductivity, leading to more efficient electron transfer during the Electro-Fenton process. Additionally, the synthesis induced structural defects that serve as active sites, promoting the direct production of hydroxyl radicals via a 3-electron pathway. Furthermore, the spherical morphology of carbon xerogels enhances the accessibility of the reagents to the active sites. This combination of factors results in the effective degradation of Tetracycline (TTC) using metal-free catalysts in the Electro-Fenton process, achieving up to an impressive 83% degradation without requiring any other external or additional catalyst.
Collapse
Affiliation(s)
- Lilian D. Ramírez-Valencia
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica-Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente-Universidad de Granada (UEQ-UGR), ES18071 Granada, Spain; (E.B.-G.); (A.I.M.-R.); (F.C.-M.)
| | | | | | | | - Agustín F. Pérez-Cadenas
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica-Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente-Universidad de Granada (UEQ-UGR), ES18071 Granada, Spain; (E.B.-G.); (A.I.M.-R.); (F.C.-M.)
| |
Collapse
|
8
|
Barranco-López A, Moral-Rodríguez AI, Fajardo-Puerto E, Elmouwahidi A, Bailón-García E. Highly graphitic Fe-doped carbon xerogels as dual-functional electro-Fenton catalysts for the degradation of tetracycline in wastewater. ENVIRONMENTAL RESEARCH 2023; 228:115757. [PMID: 36967002 DOI: 10.1016/j.envres.2023.115757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Fe-doped carbon xerogels with a highly developed graphitic structure were synthesized by a one-step sol-gel polymerization. These highly graphitic Fe-doped carbons are presented as promising dual-functional electro-Fenton catalysts to perform both the electro-reduction of O2 to H2O2 and H2O2 catalytic decomposition (Fenton) for wastewater decontamination. The amount of Fe is key to the development of this electrode material, since affects the textural properties; catalyzes the development of graphitic clusters improving the electrode conductivity; and influences the O2-catalyst interaction controlling the H2O2 selectivity but, at the same time is the catalyst for the decomposition of the electrogenerated H2O2 to OH• radicals for the organic pollutants oxidation. All materials achieve the development of ORR via the 2-electron route. The presence of Fe considerably improves the electro-catalytic activity. However, a mechanism change seems to occur at around -0.5 V in highly Fe-doped samples. At potential lower than -0.5 eV, the present of Feδ+ species or even Fe-O-C active sites favour the selectivity to 2e-pathway, however at higher potentials, Feδ+ species are reduced favoring a O-O strong interaction enhancing the 4e-pathway. The Electro-Fenton degradation of tetracycline was analyzed. The TTC degradation is almost complete (95.13%) after 7 h of reaction without using any external Fenton-catalysts.
Collapse
Affiliation(s)
- A Barranco-López
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - A I Moral-Rodríguez
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - E Fajardo-Puerto
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - A Elmouwahidi
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - E Bailón-García
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
9
|
Zhang C, Ye M, Li H, Liu Z, Fu Z, Zhang H, Wang G, Zhang Y. Fe/Fe3C nanoparticles embedded in N-doped porous carbon as the heterogeneous electro-Fenton catalyst for efficient degradation of bisphenol A. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Zheng L, Xiong Y, Gao Y, Yin F, Szczygiełda M, Krajewska M, Vo PHN, Jiang C, Liu H. Tailoring the draw solution chemistry in the integrated electro-Fenton and forward osmosis for enhancing emerging contaminants removal: Performance, DFT calculation and degradation pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162155. [PMID: 36773919 DOI: 10.1016/j.scitotenv.2023.162155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Integrated electro-Fenton and forward osmosis is capable to simultaneously separate emerging contaminants and degrade accumulated ones. Thus, an understanding of how draw solution chemistry in forward osmosis influences electro-Fenton is vital for maximizing overall treatment. Therefore, this study aimed to determine the transport behavior of four trace organic contaminants (TrOCs) including Diuron, Atrazine, DEET and Sulfamethoxazole under several influencing factors. Alkalic NaCl severely deteriorated degradation because of the less generation of OH caused by the interfered iron redox cycle. pH-neutral NaCl resulted in the highest reverse salt flux, namely possible largest production of active chlorine, therefore leading to the highest degradation. Compared to NaCl, Na2SO4 presented a significant lower reverse diffusion due to the larger hydrated radius of SO42- than Cl-. Meanwhile, the large consumption of OH by SO42- decreased degradation. Dissolved organic matters in the secondary effluent acted as the scavenger for OH and resulted in a degradation decline. Water extraction resulted from forward osmosis deteriorated degradation kinetics of all compounds except Sulfamethoxazole. On the other hand, Density functional theory calculations and identified intermediates contributed to propose the possible degradation pathways for each TrOC in terms of understanding TrOCs removal mechanism.
Collapse
Affiliation(s)
- Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Yanfang Xiong
- College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Yimeng Gao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Mateusz Szczygiełda
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Martyna Krajewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Changsheng Jiang
- College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
11
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
12
|
Real-Time Monitoring of the Atrazine Degradation by Liquid Chromatography and High-Resolution Mass Spectrometry: Effect of Fenton Process and Ultrasound Treatment. Molecules 2022; 27:molecules27249021. [PMID: 36558153 PMCID: PMC9785566 DOI: 10.3390/molecules27249021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High resolution mass spectrometry (HRMS) was coupled with ultra-high-performance liquid chromatography (uHPLC) to monitor atrazine (ATZ) degradation process of Fenton/ultrasound (US) treatment in real time. Samples were automatically taken through a peristaltic pump, and then analysed by HPLC-HRMS. The injection in the mass spectrometer was performed every 4 min for 2 h. ATZ and its degradation metabolites were sampled and identified. Online Fenton experiments in different equivalents of Fenton reagents, online US experiments with/without Fe2+ and offline Fenton experiments were conducted. Higher equivalents of Fenton reagents promoted the degradation rate of ATZ and the generation of the late-products such as Ammeline (AM). Besides, adding Fe2+ accelerated ATZ degradation in US treatment. In offline Fenton, the degradation rate of ATZ was higher than that of online Fenton, suggesting the offline samples were still reacting in the vial. The online analysis precisely controls the effect of reagents over time through automatic sampling and rapid detection, which greatly improves the measurement accuracy. The experimental set up proposed here both prevents the degradation of potentially unstable metabolites and provides a good way to track each metabolite.
Collapse
|
13
|
Liu Z, Sun X, Sun Z. CoNi alloy anchored onto N-doped porous carbon for the removal of sulfamethoxazole: Catalyst, mechanism, toxicity analysis, and application. CHEMOSPHERE 2022; 308:136291. [PMID: 36058366 DOI: 10.1016/j.chemosphere.2022.136291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Developing highly efficient, stable, recyclable, and application value heterogeneous catalysts in advanced oxidation processes has essential application value in the degradation of refractory pollutants. In this paper, the CoNi alloy anchored onto N-doped porous carbon (CoNi-600@NC) catalyst was prepared using bimetallic doped metal-organic frameworks as precursors. The magnetic CoNi-600@NC can activate peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX). Therefore, SMX can be removed 100% within 25 min. CoNi-600@NC/PMS has a broad pH (3-9) application range, good applicability, and repeatability. Radical quenching, quantitative and electrochemical experiments proved that the degradation of SMX was dominated by free radical (Superoxide anions) and non-free radical pathways (surface-bound radicals). Mechanistic analysis showed that the interaction between Co-Nx/pyridine N-sites and graphitized carbon with PMS induced the formation of surface-bound active species. Moreover, CoNi nanoparticles promoted the redox cycle of metals. The synergistic catalytic mechanisms between the CoNi alloy and the abundant functional groups gave CoNi-600@NC excellent catalytic properties and applicability. Using density functional theory predicted the reaction sites of SMX and proposed four degradation pathways. The toxicity of intermediates was comprehensively evaluated. In addition, a CoNi-600@NC continuous flow reactor was constructed with a daily treatment capacity of 45 L and 100% SMX removal. This study expands the application of persulfate advanced oxidation technology by synthesizing recyclable magnetic catalysts and provides new synergistic degradation mechanisms for removing refractory organics.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiuping Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
14
|
Chen X, Li Q, Li H, Yang P, Zou Z. Fe3O4 core–shell catalysts supported by nickel foam for efficient heterogeneous electro-Fenton degradation of salicylic acid at neutral pH. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Degradation of Residual Herbicide Atrazine in Agri-Food and Washing Water. Foods 2022; 11:foods11162416. [PMID: 36010414 PMCID: PMC9407628 DOI: 10.3390/foods11162416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Atrazine, an herbicide used to control grassy and broadleaf weed, has become an essential part of agricultural crop protection tools. It is widely sprayed on corn, sorghum and sugar cane, with the attendant problems of its residues in agri-food and washing water. If ingested into humans, this residual atrazine can cause reproductive harm, developmental toxicity and carcinogenicity. It is therefore important to find clean and economical degradation processes for atrazine. In recent years, many physical, chemical and biological methods have been proposed to remove atrazine from the aquatic environment. This review introduces the research works of atrazine degradation in aqueous solutions by method classification. These methods are then compared by their advantages, disadvantages, and different degradation pathways of atrazine. Moreover, the existing toxicological experimental data for atrazine and its metabolites are summarized. Finally, the review concludes with directions for future research and major challenges to be addressed.
Collapse
|