1
|
Zhao X, Yang M, Shi Y, Sun L, Zheng H, Wu M, Gao G, Ma T, Li G. Multifunctional bacterial cellulose-bentonite@polyethylenimine composite membranes for enhanced water treatment: Sustainable dyes and metal ions adsorption and antibacterial properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135267. [PMID: 39047552 DOI: 10.1016/j.jhazmat.2024.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Developing multifunctional materials for water treatment remains a significant challenge. Bacterial cellulose (BC) holds immense potential as an adsorbent with high pollutant-binding capacity, hydrophilicity, and biosafety. In this study, N-acetylglucosamine was used as a carbon source to ferment BC, incorporating amide bonds in situ. Bentonite, renowned for its adsorption properties, was added to the culture medium, resulting in BC-bentonite composite membranes via a one-step fermentation process. Polyethyleneimine (PEI) was crosslinked with amide bonds on the membrane via glutaraldehyde through Schiff base reactions to enhance the performance of the composite membrane. The obtained membrane exhibited increased hydrophilicity, enhanced active adsorption sites, and enlarged specific surface area. It not only physically adsorbed contaminants through its unique structure but also effectively captured dye molecules (Congo red, Methylene blue, Malachite green) via electrostatic interactions. Additionally, it formed stable complexes with metal ions (Cd²⁺, Pb²⁺, Cu²⁺) through coordination and effectively adsorbed their mixtures. Moreover, the composite membrane demonstrated the broad-spectrum antibacterial activity, effectively inhibiting the growth of tested bacteria. This study introduces an innovative method for fabricating composite membranes as adsorbents for complex water pollutants, showing significant potential for long-term wastewater treatment of organic dyes, heavy metal ions, and pathogens.
Collapse
Affiliation(s)
- Xueqing Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingbo Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yucheng Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liyuan Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haolong Zheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
2
|
Zhu L, Zhang C, Zhu R, Cao X, Bai J, Wang Y, Liu L, Dong H, Ma F. A convenient functionalization strategy of polyimide covalent organic frameworks for uranium-containing wastewater treatment and uranium recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133320. [PMID: 38142653 DOI: 10.1016/j.jhazmat.2023.133320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The purpose of this research was to design and synthesize an adsorbent based on polyimide covalent organic frameworks (PICOFs) for uranium-containing wastewater treatment and uranium recovery. A modified solvothermal method was innovatively proposed to synthesize PICOFs with high specific surface area (1998.5 m2 g-1) and regular pore structure. Additionally, a convenient functionalization strategy of PICOFs was designed through polydopamine (PDA) and a well-dispersed polymer (MPC-co-AO) containing multiple functional groups, forming stable composite (PMCA-TPPICOFs) in which the hydrogen bonding and cation-π interactions between PDA and MPC-co-AO played a key role. The obtained PMCA-TPPICOFs as an adsorbent exhibited strong selectivity for uranyl ions (maximum adsorption capacity was 538 mg g-1). In simulated wastewater with low uranium concentrations, the removal rate reached 98.3%, and the concentration of treated simulated wastewater met discharge standards. Moreover, PMCA-TPPICOFs was suitable for fixed-bed column adsorption because of its favorable structure. According to the research about adsorption mechanism, the adsorption primarily relied on electrostatic interaction and complexation. In summary, PMCA-TPPICOFs exhibited good potential for uranium-containing wastewater treatment, expanding the application of PICOFs. And the proposed functionalization strategy and modified solvothermal method may promote research in the fields of material functionalization and COFs synthesis. ENVIRONMENTAL IMPLICATION: Uranium is a raw material for nuclear energy applications, which is toxic and radioactive. If uranium is discharged with wastewater, it would not only pose a threat to the environmental protection and life safety, but also cause the loss of precious nuclear raw materials. Although adsorption was considered to be an effective way to remove uranium, many of the developed adsorbents were difficult to apply due to the harsh wastewater environment and complex preparation processes. This study reported a novel adsorbent and a new functionalization strategy, which was expected to solve the problem of uranium recovery in wastewater.
Collapse
Affiliation(s)
- Lien Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, PR China.
| | - Ruiqi Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xianqi Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040, PR China
| | - Jianwei Bai
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, PR China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fuqiu Ma
- Yantai Research Institute of Harbin Engineering University, Yantai 264006, PR China; College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
3
|
Feng X, Lin Y, Gan L, Zhao K, Zhao X, Pan Q, Fu G. Enhancement of Mass Transfer Process for Photocatalytic Reduction in Cr(VI) by Electric Field Assistance. Int J Mol Sci 2024; 25:2832. [PMID: 38474082 DOI: 10.3390/ijms25052832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The removal of Cr(VI), a highly-toxic heavy metal, from industrial wastewater is a critical issue in water treatment research. Photocatalysis, a promising technology to solve the Cr(VI) pollution problem, requires urgent and continuous improvement to enhance its performance. To address this need, an electric field-assisted photocatalytic system (PCS) was proposed to meet the growing demand for industrial wastewater treatment. Firstly, we selected PAF-54, a nitrogen-rich porous organic polymer, as the PCS's catalytic material. PAF-54 exhibits a large adsorption capacity (189 mg/g) for Cr(VI) oxyanions through hydrogen bonding and electrostatic interaction. It was then coated on carbon paper (CP) and used as the photocatalytic electrode. The synergy between capacitive deionization (CDI) and photocatalysis significantly promotes the photoreduction of Cr(VI). The photocatalytic performance was enhanced due to the electric field's influence on the mass transfer process, which could strengthen the enrichment of Cr(VI) oxyanions and the repulsion of Cr(III) cations on the surface of PAF-54/CP electrode. In addition, the PCS system demonstrates excellent recyclability and stability, making it a promising candidate for chromium wastewater treatment.
Collapse
Affiliation(s)
- Xi Feng
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Yonghui Lin
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Letian Gan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Kaiyuan Zhao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaojun Zhao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Guohua Fu
- Management School, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Kafkopoulos G, Karakurt E, Martinho RP, Duvigneau J, Vancso GJ. Engineering of Adhesion at Metal-Poly(lactic acid) Interfaces by Poly(dopamine): The Effect of the Annealing Temperature. ACS APPLIED POLYMER MATERIALS 2023; 5:5370-5380. [PMID: 37469884 PMCID: PMC10353006 DOI: 10.1021/acsapm.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Control over adhesion at interfaces from strong bonding to release between thermoplastic polymers (TPs) and metal oxides is highly significant for polymer composites. In this work, we showcase a simple and inexpensive method to tune adhesion between a TP of growing interest, poly(lactic acid) (PLA), and two commercial metal alloys, based on titanium and stainless steel. This is realized by coating titanium and stainless steel wires with polydopamine (PDA), thermally treating them under vacuum at temperatures ranging from 25 to 250 °C, and then comolding them with PLA to form pullout specimens for adhesion tests. Pullout results indicate that PDA coatings treated at low temperatures up to a given threshold significantly improve adhesion between PLA and the metals. Conversely, at higher PDA annealing temperatures beyond the threshold, interfacial bonding gradually declines. The excellent control over interfacial adhesion is attributed to the thermally induced transformation of PDA. In this work, we show using thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared, and 13C solid-state NMR that the extent of the thermal transformation is dependent on the annealing temperature. By selecting the annealing temperature, we vary the concentration of primary amine and hydroxyl groups in PDA, which influences adhesion at the metal/PLA interface. We believe that these findings contribute to optimizing and broadening the applications of PDA in composite materials.
Collapse
Affiliation(s)
- Georgios Kafkopoulos
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| | - Ezgi Karakurt
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| | - Ricardo P Martinho
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Joost Duvigneau
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| | - G Julius Vancso
- Department of Materials Science and Technology (MTP) of Polymers and Sustainable Polymer Chemistry (SPC), University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
5
|
Qing Q, Shi XY, Hu SZ, Li L, Huang T, Zhang N, Wang Y. Synchronously Enhanced Removal Ability and Stability of MXene through Biomimetic Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37364289 DOI: 10.1021/acs.langmuir.3c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Increasing environmental problems intensify the demand for high-performance environmental purification materials. MXene is a typical transition-metal carbide/nitride material with a two-dimensional geometric feature and a good deal of functional groups, and it is considered as an efficient adsorbent for removing pollutants from wastewater. However, the easy oxidation and relatively low adsorption capacity greatly restrict its application. In this study, the MXene/polydopamine (PDA) composite particles were fabricated through the biomimetic modification method of inducing the self-polymerization of dopamine in an MXene aqueous solution. Microstructure characterizations demonstrate that PDA facilitates the exfoliation of MXene. Adsorption measurements show that MXene and PDA exhibit an apparent synergistic effect in removing chromium hexavalent Cr(VI) from aqueous solution, and more PDA content leads to a larger synergistic effect. Consequently, the composite particles exhibit an ultrahigh adsorption capacity (862.3 mg/g). Specifically, even if the composite particles were stored in aqueous solution for 2 months, they still exhibit high adsorption ability with only a 3.3% loss in adsorption capacity, indirectly confirming the enhanced stability of MXene induced by PDA. Furthermore, the composite particles also show reduction ability to Cr(VI) and about 54.3% Cr(VI) can be reduced to harmless chromium trivalent Cr(III). This study provides a new method for the preparation of MXene-based adsorbents with excellent adsorption capacity and high stability, which has broad application prospects in the field of wastewater treatment.
Collapse
Affiliation(s)
- Qing Qing
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xian-Ying Shi
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shao-Zhong Hu
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Zeng Y, Tang X, Qin Y, Maimaiti A, Zhou X, Guo Y, Liu X, Zhang W, Gao J, Zhang L. Enhanced removal of methylene blue from wastewater by alginate/carboxymethyl cellulose-melamine sponge composite. Int J Biol Macromol 2023:125280. [PMID: 37301350 DOI: 10.1016/j.ijbiomac.2023.125280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Industrial dye wastewater poses a threat to human health due to its harmful effects, and the treatment of related wastewater is receiving increasing attention. In this paper, the melamine sponge with high porosity and convenient separation was selected as matrix material, and alginate/carboxymethyl cellulose-melamine sponge composite (SA/CMC-MeS) was prepared through crosslinking strategy. Not only does the composite cleverly combined the merits of alginate and carboxymethyl cellulose, it also enhanced the adsorption performance for methylene blue (MB). The adsorption data manifested that the adsorption process of SA/CMC-MeS agreed with the Langmuir model and pseudo-second-order kinetic model, and theoretical maximum adsorption capacity was 230 mg/g (pH 8). The characterization results demonstrated that the adsorption mechanism was attributed to the electrostatic attraction between the carboxyl anions on the composite and the dye cations in solution. Importantly, SA/CMC-MeS could selectively separate MB from binary dye system and had positive anti-interference ability in the face of coexisting cations. After 5 times of cycles, the adsorption efficiency remained above 75 %. Based on these outstanding practical properties, this material has a potential to solve dye contamination.
Collapse
Affiliation(s)
- Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangtao Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Adila Maimaiti
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xudong Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yujie Guo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xin Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Gao
- BioLink Pharmaceutical Application System (Jiangsu) Co., Ltd, NanTong 226503, PR China.
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
7
|
Thu VT, Trieu MH, An NHT, Dat NT, Linh ND, Manh NB. Mussel - Inspired biosorbent combined with graphene oxide for removal of organic pollutants from aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114793. [PMID: 36963189 DOI: 10.1016/j.ecoenv.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
In this work, we develop a mussel-inspired biosorbent combined with graphene oxide for removal of organic dyes in water sources. The composite was prepared via self-polymerization of dopamine in weak alkaline solution containing graphene oxide at ambient condition. Morphological and structural studies revealed that polydopamine has gradually grown to cover the surface of graphene oxide flakes, partially reduced these flakes, and somehow form many grains (size around 20 nm) on the flakes instead of making very large aggregates as usual. The mass ratio between two components of the composite was also investigated to find the optimal one which provides enough surface area (20 m2.g-1) and maintain adhesive sites in order to ensure high-efficiency removal of organic molecules. The adsorption kinetics and isotherms of as-prepared adsorbent towards methylene blue were found to fit well with pseudo-first order kinetics model and Langmuir isotherm. The maximum adsorption capacity (qm) and Langmuir constant (kL) were estimated to be 270 mg.g-1 and 0.49 L. mg-1. The as-prepared bio-sorbent is very promising for remediation of water sources contaminated with cationic organic molecules and heavy metal ions.
Collapse
Affiliation(s)
- Vu Thi Thu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Mai Hai Trieu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Hoang Thuy An
- Hanoi National University of Education (HNUE), 144 Xuan Thuy, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Tien Dat
- Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Dieu Linh
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Ba Manh
- Institute of Chemistry (IOC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
8
|
Hu SZ, Deng YF, Li L, Zhang N, Huang T, Lei YZ, Wang Y. Biomimetic Polylactic Acid Electrospun Fibers Grafted with Polyethyleneimine for Highly Efficient Methyl Orange and Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3770-3783. [PMID: 36856335 DOI: 10.1021/acs.langmuir.2c03508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid growth of industrialization has resulted in the release of large quantities of pollutants into the environment, especially dyes and heavy metals, which are environmentally hazardous for humans and animals. It is considered as the most promising and environmentally friendly route to develop green materials by using the green modification method, which has no negative impact on the environment. In this work, the green material of polylactic acid (PLA) was used as the substrate material, and a novel modification method of polydopamine (PDA)-assisted polyethyleneimine (PEI) grafting was developed. The electrospun PLA fibers are mainly composed of stereocomplex crystallites, which were achieved via the electrospinning of poly(l-lactic acid) and poly(d-lactic acid). The water-soluble PEI was grafted onto the PDA-modified PLA fibers through the glutaraldehyde-assisted cross-linking reaction. The prepared composite fibers can be degraded, which is environmentally friendly and meets the requirements of sustainable development. The potential application of such PLA composite fibers in wastewater treatment was intensively evaluated. The results show that at appropriate fabrication conditions (PDA concentration of 3 g·L-1 and a PEI molecular weight of 70,000 g·mol-1), the composite fibers exhibit the maximum adsorption capacities of 612 and 398.41 mg·g-1 for methyl orange (MO) and hexavalent chromium [Cr(VI)], respectively. Simultaneously, about 64.79% of Cr(VI) adsorbed on the composite fibers was reduced to Cr(III). The above results show that the PLA composite fibers have a good development prospect in the field of wastewater treatment.
Collapse
Affiliation(s)
- Shao-Zhong Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Fan Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
9
|
Xiong YS, Li MX, Jia R, Zhou LS, Fan BH, Tang JY, Gai L, Li W, Lu HQ, Li K. Polyethyleneimine/polydopamine-functionalized self-floating microspheres for caramel adsorption: Interactions and phenomenological mass transfer kinetics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Tan WB, Luo D, Song W, Lu YY, Cheng N, Zhang JB, Huang T, Wang Y. Polydopamine-assisted polyethyleneimine grafting on electrospun cellulose acetate/TiO2 fibers towards highly efficient removal of Cr(VI). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Surface modification of PVDF membrane via deposition-grafting of UiO-66-NH2 and their application in oily water separations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
El-Ghobashy MA, Hashim H, Darwish MA, Khandaker MU, Sulieman A, Tamam N, Trukhanov SV, Trukhanov AV, Salem MA. Eco-Friendly NiO/Polydopamine Nanocomposite for Efficient Removal of Dyes from Wastewater. NANOMATERIALS 2022; 12:nano12071103. [PMID: 35407221 PMCID: PMC9000394 DOI: 10.3390/nano12071103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
The rapid development of industries discharges huge amounts of wastewater that contain surface water. For this reason, we used NiO/polydopamine (NiO/PDA) nanocomposite as an efficient material for the removal of Methyl violet 2B from water. It was synthesized and then characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) analysis, Transmission Electron Microscopy (TEM), and Brunauer–Emmett–Teller (BET). The EDX analysis confirmed the presence of O, Ni, N, and C. The composite has an average particle size of 18 nm. Its surface area is 110.591 m2/g. It was found that the efficiency of dye removal by adsorption on NiO/PDA exceeded that of bare NiO. The adsorption capacity of NiO and NiO/PDA are 126 and 284 mg/g, respectively. The effects of adsorbent dose, dye concentration, and pH on the removal efficiency were examined. The efficiency increased with increasing the adsorbent dose and pH, but dropped from 85 to 73% within 30 min as the initial dye concentration was increased from 0.984 to 4.92 mg/L. Such a drop in the removal efficiency is due to the blocking of the surface-active sites of NiO/PDA, with the high population of dye molecules derived from the continuous increase in dye concentration. The adsorption results of the dye fitted well with the pseudo-second-order kinetics and Langmuir isotherm. The reusability data showed that NiO/PDA was stable across three adsorption–regeneration cycles, thus it can be considered a good recyclable and efficient adsorbent. Because of these results, it can be considered that this method can be applied for the treatment of wastewater.
Collapse
Affiliation(s)
- Marwa A. El-Ghobashy
- Chemistry Department, Faculty of Science, Tanta University, Al-Geish St., Tanta 31527, Egypt;
- Correspondence: (M.A.E.-G.); (S.V.T.)
| | - Hisham Hashim
- Physics Department, Faculty of Science, Tanta University, Al-Geish St., Tanta 31527, Egypt; (H.H.); (M.A.D.)
| | - Moustafa A. Darwish
- Physics Department, Faculty of Science, Tanta University, Al-Geish St., Tanta 31527, Egypt; (H.H.); (M.A.D.)
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia;
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Sergei V. Trukhanov
- Laboratory of Magnetic Films Physics, SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, 19, P. Brovki Str., 220072 Minsk, Belarus;
- Correspondence: (M.A.E.-G.); (S.V.T.)
| | - Alex V. Trukhanov
- Laboratory of Magnetic Films Physics, SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, 19, P. Brovki Str., 220072 Minsk, Belarus;
- Laboratory of Single Crystal Growth, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russia
| | - Mohamed A. Salem
- Chemistry Department, Faculty of Science, Tanta University, Al-Geish St., Tanta 31527, Egypt;
| |
Collapse
|