1
|
Shi J, Hu Y, Li S, Xiao W, Yang Y, Ji J. Electro-Conductive Modification of Polyvinylidene Fluoride Membrane for Electrified Wastewater Treatment: Optimization and Antifouling Performance. MEMBRANES 2024; 15:1. [PMID: 39852242 PMCID: PMC11767159 DOI: 10.3390/membranes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance. The anti-fouling property of the conductive membranes was analyzed using model pollutants. The results indicate that when the concentrations of the pyrrole, BVIMBF4, and FeCl3·6H2O are 0.9 mol/L, 4.8 mmol, and 0.8 mol/L, respectively, the electrical resistance of the PVDF-CM is 93 Ω/sq with the water contact angle of 31°, demonstrating good conductivity and hydrophilicity. Batch membrane filtration experiments coupled with negative voltage indicated that when an external voltage of 2.0 V is applied, membrane fouling rates for the conductive membrane filtering BSA and SA solutions are reduced by 17.7% and 17.2%, respectively, compared to the control (0 V). When an external voltage of 0.5 V is applied, the membrane fouling rate for the conductive membrane filtering HA solution is reduced by 72.6%. This study provides a valuable reference for the efficient preparation of conductive membranes for cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Jinzhuo Shi
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yisong Hu
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Songhua Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Wenqian Xiao
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Yuan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.S.); (S.L.); (W.X.); (Y.Y.)
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Jiayuan Ji
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
2
|
Echakouri M, Henni A, Salama A. A Novel Modeling Optimization Approach for a Seven-Channel Titania Ceramic Membrane in an Oily Wastewater Filtration System Based on Experimentation, Full Factorial Design, and Machine Learning. MEMBRANES 2024; 14:199. [PMID: 39330540 PMCID: PMC11433700 DOI: 10.3390/membranes14090199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
This comprehensive study looks at how operational conditions affect the performance of a novel seven-channel titania ceramic ultrafiltration membrane for the treatment of produced water. A full factorial design experiment (23) was conducted to study the effect of the cross-flow operating factors on the membrane permeate flux decline and the overall permeate volume. Eleven experimental runs were performed for three important process operating variables: transmembrane pressure (TMP), crossflow velocity (CFV), and filtration time (FT). Steady final membrane fluxes and permeate volumes were recorded for each experimental run. Under the optimized conditions (1.5 bar, 1 m/s, and 2 h), the membrane performance index demonstrated an oil rejection rate of 99%, a flux of 297 L/m2·h (LMH), a 38% overall initial flux decline, and a total permeate volume of 8.14 L. The regression models used for the steady-state membrane permeate flux decline and overall permeate volume led to the highest goodness of fit to the experimental data with a correlation coefficient of 0.999. A Multiple Linear Regression method and an Artificial Neural Network approach were also employed to model the experimental membrane permeate flux decline and analyze the impact of the operating conditions on membrane performance. The predictions of the Gaussian regression and the Levenberg-Marquardt backpropagation method were validated with a determination coefficient of 99% and a Mean Square Error of 0.07.
Collapse
Affiliation(s)
- Mohamed Echakouri
- Process Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Amr Henni
- Process Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Amgad Salama
- Process Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
3
|
Jang H, Lee CS, Kim JH, Kim J. Optimization of photocatalytic ceramic membrane filtration by response surface methodology: Effects of hydrodynamic conditions on organic fouling and removal efficiency. CHEMOSPHERE 2024; 356:141885. [PMID: 38575084 DOI: 10.1016/j.chemosphere.2024.141885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The effects of the operating conditions, including the applied pressure, feed organic concentration, and recirculation flowrate along the TiO2-coated ceramic membrane, on the normalized membrane permeability and organic removal efficiency were systematically investigated by operating a photocatalytic membrane reactor (PMR). Response surface methodology (RSM) was conducted to better understand the interactive effect of operational conditions as well as their individual and combined effects to control membrane performance. Our results showed that the applied pressure and feed organic concentration, as single parameter, affected the normalized membrane permeability and organic removal efficiency more dominantly than the recirculation flowrate. The polynomial performance equations generated by RSM successfully predicted the membrane performance of the PMR. The responses to the normalized membrane permeability and organic removal efficiency with respect to the operational conditions were less sensitive to any combination of operational conditions than to their individual impacts. The combined effects of the operating conditions were less pronounced in promoting the catalytic performance of organic contaminants on the TiO2 surface. Our RSM analysis based on experimental observations designed by Box-Behnken Design (BBD) suggested that 1.3 bar of applied pressure, 44 mg/L of feed organic dye concentration and 0.8 L/min as recirculation flowrate as optimum conditions achieved more than 98% of organic removal efficiency and less than 5% of decline in normalized membrane permeability. This research shows that the RSM provides effective tool to optimize operational conditions to determine fouling rate and organic removal in PMR.
Collapse
Affiliation(s)
- Hoseok Jang
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inha University, Michuholgu, Incheon, 22212, Republic of Korea
| | - Chang Soo Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymer Engineering, Inha University, Michuholgu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Razali MC, Wahab NA, Sunar N, Shamsudin NH. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. MEMBRANES 2023; 13:285. [PMID: 36984672 PMCID: PMC10051433 DOI: 10.3390/membranes13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Water is one of the main sources of life's survival. It is mandatory to have good-quality water, especially for drinking. Many types of available filtration treatment can produce high-quality drinking water. As a result, it is intriguing to determine which treatment is the best. This paper provides a review of available filtration technology specifically for drinking water treatment, including both conventional and advanced treatments, while focusing on membrane filtration treatment. This review covers the concerns that usually exist in membrane filtration treatment, namely membrane fouling. Here, the parameters that influence fouling are identified. This paper also discusses the different ways to handle fouling, either based on prevention, prediction, or control automation. According to the findings, the most common treatment for fouling was prevention. However, this treatment required the use of chemical agents, which will eventually affect human health. The prediction process was usually used to circumvent the process of fouling development. Based on our reviews up to now, there are a limited number of researchers who study membrane fouling control based on automation. Frequently, the treatment method and control strategy are determined individually.
Collapse
Affiliation(s)
- Mashitah Che Razali
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaliza Abdul Wahab
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Noorhazirah Sunar
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Nur Hazahsha Shamsudin
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| |
Collapse
|
5
|
Liu N, Yang J, Hu X, Zhao H, Chang H, Liang Y, Pang L, Meng Y, Liang H. Fouling and chemically enhanced backwashing performance of low-pressure membranes during the treatment of shale gas produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156664. [PMID: 35700787 DOI: 10.1016/j.scitotenv.2022.156664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The treatment of shale gas produced water (SGPW) for beneficial reuse is currently the most dominant and economical option. Membrane filtration is one preferred method to deal with SGPW, but membrane fouling is an unavoidable problem. In this study, two types of ultrafiltration (UF) membranes and one type of microfiltration (MF) membrane were investigated to treat SGPW from Sichuan basin. Results showed that increased total dissolved solid (31-40 g/L) and UV254 (10-42.9 m-1) were observed for the same shale gas plays, and the primary fluorescent organic substances were humic acid-like components. Compared to UF membranes with the flux decline by 2% to 60%, MF membranes with larger pore size were more likely to be fouled with the flux decline by 43% to 95%. Cake layer filtration was verified to be the primary membrane fouling mechanism. Statistical analysis showed that UV254 played the most significant role in membrane fouling which had the highest correlation (0.76 to 0.93). Compared to permeate backwashing (13%), deionized water backwashing and chemically enhanced backwashing (CEB) using NaClO, H2O2 and citric acid improved the cleaning efficiencies (31%-95%). CEB using NaOH prepared by deionized water aggravated membrane fouling, while excellent cleaning efficiencies (39%-79%) were observed for CEB using NaOH prepared by permeate. The difference in cleaning behaviors for fouled membranes by SGPW was verified by morphology observation and element composition analysis.
Collapse
Affiliation(s)
- Naiming Liu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Jie Yang
- Safety, Environment, and Technology Supervision Research Institute of Petrochina Southwest Oil & Gasfield Company, Chengdu, China
| | - Xueqi Hu
- State Grid Sichuan Comprehensive Energy Service Co., Ltd., Power Engineering Br., Chengdu 610072, China
| | - Huaxin Zhao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lina Pang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Han Z, Huo J, Zhang X, Ngo HH, Guo W, Du Q, Zhang Y, Li C, Zhang D. Characterization and flocculation performance of a newly green flocculant derived from natural bagasse cellulose. CHEMOSPHERE 2022; 301:134615. [PMID: 35447202 DOI: 10.1016/j.chemosphere.2022.134615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
A newly green natural polymer bagasse cellulose based flocculant (PBCF) was synthesized utilizing a grafting copolymerization method for effectively enhancing humic acid (HA) removal from natural water. This work aims to investigate flocculation behavior of PBCF in synthetic water containing HA, and the effects of flocculant dose and initial solution pH on flocculation performance. Results showed that PBCF functioned well at a flocculant dose of 60 mg/L and pH ranging from 6.0 to 9.0. The organic removal efficiency in synthetic water in terms of HA (UV254) and chemical oxygen demand (COD Mn) were up to 90.6% and 91.3%, respectively. Furthermore, the charge neutralization and adsorption bridging played important roles in HA removal. When applied for lake water, PBCF removed 91.6% turbidity and 50.0% dissolved organic matter, respectively. In short, PBCF demonstrates great potential in water treatment in a safe and environmentally friendly or 'green' way.
Collapse
Affiliation(s)
- Ziqiu Han
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Jiangbo Huo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qing Du
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yufeng Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Chaocan Li
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Dan Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| |
Collapse
|
7
|
Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method. MEMBRANES 2022; 12:membranes12040374. [PMID: 35448340 PMCID: PMC9032820 DOI: 10.3390/membranes12040374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Layer-by-layer (LBL) self-assembly technology has become a new research hotspot in the fabrication of nanofiltration membranes in recent years. However, there is a lack of a systematic approach for the assessment of influencing factors during the membrane fabrication process. In this study, the process optimization of LBL deposition was performed by a two-step statistical method. The multiple linear regression was performed on the results of single-factor experiments to determine the major influencing factors on membrane performance, including the concentration of Poly (allylamine hydrochloride) (PAH), glutaraldehyde, and the NaCl concentration in PAH solution. The Box–Behnken response surface method was then used to analyze the interactions between the selected factors, while their correlation with the membrane performance was obtained by polynomial fitting. The R2 value of the regression models (0.97 and 0.94) was in good agreement with the adjusted R2 value (0.93 and 0.86), indicating that the quadratic response models were adequate enough to predict the membrane performance. The optimal process parameters were finally determined through dual-response surface analysis to achieve both high membrane permeability of 14.3 LMH·MPa−1 and MgSO4 rejection rate of 90.22%.
Collapse
|