1
|
Zhang Z, Zai Y, Zhang H, Su K, Zhu N, Li Z, Sun J, Guo K. Synthesis of hyperbranched polyamidoamine-modified chitosan aerogel and its efficient adsorption of Cr(VI) from aqueous solution. Int J Biol Macromol 2025; 311:143395. [PMID: 40268014 DOI: 10.1016/j.ijbiomac.2025.143395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Here, hyperbranched polyamidoamine (HPAMAM)-functionalized chitosan aerogels (HPCSA) with a porous structure and abundant active sites were prepared via the freeze-drying method. The structure of HPCSA was proven through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), and mercury intrusion porosimetry (MIP). The kinetic experiments identified that the adsorption process of Cr(VI) by HPCSA followed the pseudo-second-order model, confirming that Cr(VI) adsorption was dominantly controlled by chemisorption. The adsorption isotherm tests followed the Langmuir model and the maximum capacity of Cr(VI) ions was 862.07 mg/g at pH = 3, obviously higher than most reported chitosan-derived adsorbents. The thermodynamic investigation confirmed that the adsorption was spontaneous and random. In addition, after 4 cycles, the adsorption efficiency of HPCSA for Cr(VI) declined from 95.2 to 73.8 %. The primary adsorption mechanism including the caught and reduction of Cr(VI) ions was elucidated via FT-IR, density functional theory (DFT), and XPS.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuxin Zai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kangning Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Hammad EN, Eltaweil AS, Abouelenein SA, El-Subruiti G. Enhanced Cr(VI) removal via CPBr-modified MIL-88A@amine-functionalized GO: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47851-47865. [PMID: 39009817 DOI: 10.1007/s11356-024-33859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024]
Abstract
Water contamination by heavy metals, especially chromium (VI), poses a critical environmental issue due to its carcinogenic nature and persistence in the environment. Addressing this, the current study develops an efficient adsorbent, CPBr-MIL-88A@AmGO, which utilizes the synergistic capabilities of Cetylpyridinium bromide-modified MIL-88A and amine-functionalized graphene oxide to enhance Cr(VI) removal from aqueous solutions. The obtained results indicate that CPBr-MIL-88A@AmGO achieves its highest removal efficacy at pH 2, where the interaction of CPBr and AmGO's positively charged centers significantly contributes to the adsorption processes. According to the Langmuir isotherm model, the composite's adsorption capacity reached a maximum of 306.75 mg/g. The adsorption kinetics adhered to a pseudo-second-order model along with the endothermic nature of the process. Although the presence of SO42- ions significantly reduces adsorption capacity, other interfering ions including Na+, K+, Ca2+, Cl-, and NO3- only slightly affect it. Remarkably, the composite maintains high removal efficiency, over 82%, even after 7 recycling tests, underscoring its potential for practical applications in water treatment systems. The proposed mechanism involves the contribution of electrostatic attractions, ion exchange, complexation, and the reduction of Cr(VI) to Cr(III) in the removal process. This study not only offers a potent solution for Cr(VI) remediation but also contributes to sustainable water resource management.
Collapse
Affiliation(s)
- Eman N Hammad
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Abdelazeem S Eltaweil
- Department of Engineering, Faculty of Engineering and Technology, University of Technology and Applied Sciences, Sultanate of Oman, Ibra, Oman.
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Saeyda A Abouelenein
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gehan El-Subruiti
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Elsayed NH, Alamrani NA, Alatawi RAS, Al-Anazi M, Alenazi DAK, Alhawiti AS, Almutairi AM, Al-Anazi W, Monier M. Ion-imprinted aminoguanidine-chitosan for selective recognition of lanthanum (III) from wastewater. Int J Biol Macromol 2024; 270:132193. [PMID: 38723816 DOI: 10.1016/j.ijbiomac.2024.132193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Developing a sorbent for the removal of La3+ ions from wastewater offers significant environmental and economic advantages. This study employed an ion-imprinting process to integrate La3+ ions into a newly developed derivative of aminoguanidine-chitosan (AGCS), synthesized via an innovative method. The process initiated with the modification of chitosan by attaching cyanoacetyl groups through amide bonds, yielding cyanoacetyl chitosan (CAC). This derivative underwent further modification with aminoguanidine to produce the chelating AGCS biopolymer. The binding of La3+ ions to AGCS occurred through imprinting and cross-linking with epichlorohydrin (ECH), followed by the extraction of La3+, resulting in the La3+ ion-imprinted sorbent (La-AGCS). Structural confirmation of these chitosan derivatives was established through elemental analysis, FTIR, and NMR. SEM analysis revealed that La-AGCS exhibited a more porous structure compared to the smoother non-imprinted polymer (NIP). La-AGCS demonstrated superior La3+ capture capability, with a maximum capacity of 286 ± 1 mg/g. The adsorption process, fitting the Langmuir and pseudo-second-order models, indicated a primary chemisorption mechanism. Moreover, La-AGCS displayed excellent selectivity for La3+, exhibiting selectivity coefficients ranging from 4 to 13 against other metals. This study underscores a strategic approach in designing advanced materials tailored for La3+ removal, capitalizing on specific chelator properties and ion-imprinting technology.
Collapse
Affiliation(s)
- Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; Center for Renewable Energy and Environmental Technologies, University of Tabuk, Tabuk Saudi Arabia.
| | - Nasser A Alamrani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Duna A K Alenazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Abeer M Almutairi
- Physics Department, Faculty of Science, University of Tabuk, 71421, Saudi Arabia
| | - Wejdan Al-Anazi
- Department of Computer of Science, Faculty of computers and information technology, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Liu X, Han Z, Lin N, Hao Y, Qu J, Gao P, He X, Liu B, Duan X. Immature persimmon residue as a novel biosorbent for efficient removal of Pb(II) and Cr(VI) from wastewater: Performance and mechanisms. Int J Biol Macromol 2024; 266:131083. [PMID: 38531519 DOI: 10.1016/j.ijbiomac.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Owing to the powerful affinity of tannin toward heavy metal ions, it is frequently immobilized on adsorbents to enhance their adsorption properties. However, natural adsorbents containing tannin have been overlooked owing to its water solubility. Herein, a novel natural adsorbent based on the immature persimmon residue (IPR) with soluble tannin removed was fabricated to eliminate Pb(II) and Cr(VI) in aquatic environments. The insoluble tannin in IPR endowed it with prosperous properties for eliminating Pb(II) and Cr(VI), and the IPR achieved maximum Pb(II) and Cr(VI) adsorption quantities of 68.79 mg/g and 139.40 mg/g, respectively. Kinetics and isothermal adsorption analysis demonstrated that the removal behavior was controlled by monolayer chemical adsorption. Moreover, the IPR exhibited satisfactory Pb(II) and Cr(VI) removal efficiencies even in the presence of multiple coexisting ions and showed promising regeneration potential after undergoing five consecutive cycles. Additionally, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis unveiled that the elimination mechanisms were primarily electrostatic attraction, chelation and reduction. Overall, the IPR, as a tannin-containing biosorbent, was verified to possess substantial potential for heavy metal removal, which can provide new insights into the development of novel natural adsorbents from the perspective of waste resource utilization.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zixuan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexin Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Qu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Doondani P, Panda D, Gomase V, Peta KR, Jugade R. Novel Chitosan-ZnO nanocomposites derived from Nymphaeaceae fronds for highly efficient removal of Reactive Blue 19, Reactive Orange 16, and Congo Red dyes. ENVIRONMENTAL RESEARCH 2024; 247:118228. [PMID: 38246296 DOI: 10.1016/j.envres.2024.118228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The primary aim of this investigation was to synthesise novel adsorbent by incorporating greenly synthesized zinc oxide nanoparticles into chitosan matrix (G-ZnO-Cs). The production of ZnO Nanoparticles via a green approach involved the utilization of extracts derived from Nymphaeaceae fronds. This assertion was substantiated by the application of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD) analytical techniques. Several Analytical methods such as Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDAX), FESEM, Thermogravimetric Analysis (TGA), XRD, Brunauer-Emmett-Teller (BET) analysis, and point-of-zero charge determination were used to characterize G-ZnO-Cs. Further study investigates the impact of five key processing parameters, namely pH, interaction duration, G-ZnO-Cs dosage, temperature, and initial concentration of dyes, on the removal of three organic dyes Reactive Blue 19 (RB 19), Reactive Orange 16 (RO 16), and Congo Red (CR) The adsorption process of Reactive Blue 19 (RB 19), Reactive Orange 16 (RO 16), and Congo Red (CR) dyes on G-ZnO-Cs were determined to comply to the pseudo-second-order (PSO) and Langmuir models, as determined through equilibrium and kinetic experiments. The highest adsorption capabilities for RB 19, RO 16 and CR dye were revealed to be 219.6 mg/g, 129.6 mg/g, and 118.8 mg/g, respectively. The elimination success rate of the fixed-bed column approach for treating huge volumes was highlighted in the conducted research. Moreover, the G-ZnO-Cs composite exhibited significant reusability due to its ability to undergo elution and simultaneous regeneration processes.
Collapse
Affiliation(s)
- Priyanka Doondani
- Department of Chemistry, RTM Nagpur University, 440033, Nagpur, India
| | - Dhananjaya Panda
- Department of Electronic Science, University of Delhi South Campus, 110021, Benito Juarez Road, New Delhi, India
| | - Vaishnavi Gomase
- Department of Chemistry, RTM Nagpur University, 440033, Nagpur, India
| | - Koteswara Rao Peta
- Department of Electronic Science, University of Delhi South Campus, 110021, Benito Juarez Road, New Delhi, India.
| | - Ravin Jugade
- Department of Chemistry, RTM Nagpur University, 440033, Nagpur, India.
| |
Collapse
|
6
|
Cao DX, Zhou YJ, Jiang HX, Feng XN, Liu XY, Li W, Liu JQ, Tang AN, Kong DM. Always positive covalent organic nanosheet enabling pH-independent adsorption and removal of Cr(Ⅵ). JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133420. [PMID: 38183943 DOI: 10.1016/j.jhazmat.2023.133420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Rapid and highly effective removal of hexavalent chromium (Cr(Ⅵ)) is extremely vital to water resources restoration and environmental protection. To overcome the pH limitation faced by most ionic absorbents, an always positive covalent organic nanosheet (CON) material was prepared and its Cr(VI) adsorption and removal capability was investigated in detail. As-prepared EB-TFB CON (TFB = 1,3,5-benzaldehyde, EB = ethidium bromide) shows strong electropositivity in the tested pH range of 1 ∼ 10, display a pH-independent Cr(VI) removal ability, and work well for Cr(VI) pollution treatment with good anti-interference capability and reusability in a wide pH range covering almost all Cr(VI)-contaminated real water samples, thus eliminating the requirement for pH adjustment. Moreover, the nanosheet structure, which is obtained by a facile ultrasonic-assisted self-exfoliation, endows EB-TFB CON with fully exposed active sites and shortened mass transfer channels, and the Cr(VI) adsorption equilibrium can be reached within 15 min with a high adsorption capacity of 280.57 mg·g-1. The proposed Cr(VI) removal mechanism, which is attributed to the synergetic contributions of electrostatic adsorption, ion exchange and chemical reduction, is demonstrated by experiments and theoretical calculations. This work not only provides a general Cr(VI) absorbent without pH limitation, but also presents a paradigm to prepare ionic CONs with relatively constant surface charges.
Collapse
Affiliation(s)
- Dong-Xiao Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yun-Jie Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Xin Jiang
- Agro-Environmental Protection Institute, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Laboratory of Environmental Factors Risk Assessment of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, China
| | - Xue-Nan Feng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing-Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Zhang H, Mai Y, Xie S, Wang G, Wang S. Removal of U(VI) from acidic wastewater by persimmon tannin-functionalized chitosan. Appl Radiat Isot 2024; 205:111145. [PMID: 38194887 DOI: 10.1016/j.apradiso.2023.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
With sodium tripolyphosphate (STPP) as cross-linker, Persimmon tannin-chitosan microspheres (PT-CS) were synthesized by hydrothermal for removing U(VI) from acidic effluent. The batch experiments indicated that PT-CS adsorbed U(VI) most effectively at pH 1.5, the maximum adsorption capacity for PT-CS was 245 mg/g. Compared to pure CS dissolved at pH 3, PT-CS still maintain high stability at pH 1. Moreover, single system of common metal ions in rare earth wastewater only slightly affected the adsorption of uranium at pH 1.5, but this process was inhibited about 30% at pH 5. Those results indicated that the selectivity of PT-CS for uranium removal could be controlled by regulating the pH and there are excellent potentials for PT-CS using in acid metal water treatment. Its adsorption selectivity and ability to adapt different condition was demonstrated with uraniferous rare earth wastewater treatment. The adsorption for PT-CS to U(VI) were well fitted for both Langmuir isothern and pseudo-secondary kinetic model equations, and that meant chemisorption dominated the removal process. Spectroscopic analyses confirmed that the adsorption of U(VI) occurred via surface complexation by -OH and ion exchange with Na+. Therefore, this study provides a high-efficiency, low-cost, valuable and highly adaptable method for the treatment of acidic uranium-containing effluents.
Collapse
Affiliation(s)
- Haibo Zhang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yingqing Mai
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China; Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Guohua Wang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Shuiyun Wang
- Nonferrous Metallurgy Design and Research Institute, Changsha 410000, China
| |
Collapse
|
8
|
Lunardi VB, Cheng KC, Lin SP, Angkawijaya AE, Go AW, Soetaredjo FE, Ismadji S, Hsu HY, Hsieh CW, Santoso SP. Modification of cellulosic adsorbent via iron-based metal phenolic networks coating for efficient removal of chromium ion. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132973. [PMID: 37976845 DOI: 10.1016/j.jhazmat.2023.132973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Surface modification of durian rind cellulose (DCell) was done by utilizing the strong coordination effect of polyphenol-based metal phenolic networks (MPNs). MPNs from Fe(III)-tannic acid (FTN) and Fe(III)-gallic acid (FGN) were coated on DCell via a self-assembly reaction at pH 8, resulting in adsorbent composites of FTN@DCell and FGN@DCell for removal of Cr(VI). Batch adsorption experiments revealed that FTN coating resulted in an adsorbent composite with higher adsorption capacity than FGN coating, owing to the greater number of additional adsorption sites from phenolic hydroxyl groups of tannic acid. FTN@DCell exhibits an equilibrium adsorption capacity at 30°C of 110.9 mg/g for Cr(VI), significantly higher than FGN@DCell (73.63 mg/g); the adsorption capacity was increased at higher temperature (i.e., 155.8 and 116.8 mg/g at 50°C for FTN@DCell and FGN@DCell, respectively). Effects of pH, adsorbent dose, initial concentration, and coexisting ions on Cr(VI) removal were investigated. The kinetics fractal-based model Brouers-Sotolongo indicates the 1st and 2nd order reaction for Cr(VI) adsorption on FTN@DCell and FGN@DCell, respectively. The isotherm data can be described with a fractal-based model, which implies the heterogeneous nature of the adsorbent surface sites. The Cr(VI) adsorption via surface complexation with phenolic hydroxyl groups was confirmed by evaluating the functional groups shifting. FGN@DCell and FTN@DCell were found to have good reusability, maintaining over 50 % of their adsorption efficiency after four adsorption-desorption cycles. Environmental assessment with Arabidopsis thaliana demonstrated their potential in eliminating the Cr(VI) phytotoxic effect. Thus, this study has shown the efficient and economical conversion of durian waste into environmentally benign adsorbent for heavy metal treatment.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Graduate Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | | | - Alchris Woo Go
- Chemical Engineering Department, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei 10607, Taiwan
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 518057, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, Hong Kong, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
9
|
Liu Y, Ni S, Wang W, Rong M, Cai H, Xing H, Yang L. Functionalized hydrogen-bonded organic superstructures via molecular self-assembly for enhanced uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133002. [PMID: 37988939 DOI: 10.1016/j.jhazmat.2023.133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Effective uranium extraction from water is essential for the development of nuclear power industry and the protection of human health and environment. Nevertheless, it still remains challenging to realize efficient and cost-effective uranium extraction. Herein, a fast and simple method for the direct fabrication of novel functionalized hydrogen-bonded organic superstructures via molecular self-assembly is reported. The as-constructed flower-like superstructures (MCP-5) can allow the exposure of adsorption sites and facilitate the transport of uranyl ions, while synergism between amino and phosphate groups can realize selective uranium extraction. Consequently, MCP-5 possesses excellent uranium adsorption ability with a high saturated adsorption capacity of 950.52 mg g-1, high utilization rate of adsorption sites and adsorption equilibrium time of simply 5 min in uranium-spiked aqueous solution. Furthermore, MCP-5 offers selective uranium adsorption over a broad range of metal ions. The facile synthesis and low-cost raw materials make it have promising potential for uranium capture. Simultaneously, this study opens a design avenue of functionalized hydrogen-bonded organic material for efficient uranium extraction.
Collapse
Affiliation(s)
- Yafeng Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Ni
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wenjie Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Rong
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangrong Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Yuan Y, Xia H, Guo W, Huang B, Chen Y, Qiu M, Wang Y, Hu B. The modified biochar from wheat straw by the combined composites of MnFe 2O 4 nanoparticles and chitosan Schiff base for enhanced removal of U(VI) ions from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:126045-126056. [PMID: 38008835 DOI: 10.1007/s11356-023-30961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
In the last few decades, U(VI) is a significant environmental threat. The innovative and environmentally friendly adsorbent materials for U(VI) removal were urgent. Preparation of the modified biochar from wheat straw by combined composites of MnFe2O4 nanoparticles and chitosan Schiff base (MnFe2O4@CsSB/BC) was characterized, and adsorption experiments were carried out to investigate the performance and interfacial mechanism of U(VI) removal. The results showed that MnFe2O4@CsSB/BC exhibited high adsorption capacity of U(VI) compared with BC. The adsorption process of U(VI) removal by MnFe2O4@CsSB/BC could be ascribed as pseudo-second-order model and Langmuir model. The maximum adsorption capacity of U(VI) removal by MnFe2O4@CsSB/BC reached 19.57 mg/g at pH4.0, 30 mg/L of U(VI), and 25 °C. The possible mechanism was a chemical adsorption process, and it mainly contained electrostatic attraction and surface complexation. Additionally, it also was an economic and environmental friendly adsorbent.
Collapse
Affiliation(s)
- Youdi Yuan
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Haixin Xia
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Weijuan Guo
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Binbin Huang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yujun Chen
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Muqing Qiu
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Yuchun Wang
- Zhejiang Kunhe Environmental Protection Technology Co., Ltd., Shaoxing, 312000, People's Republic of China
| | - Baowei Hu
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| |
Collapse
|
11
|
Liu L, Zhao B, Wu D, Wang X, Yao W, Ma Z, Hou H, Yu S. Rational design of MOF@COF composites with multi-site functional groups for enhanced elimination of U(VI) from aqueous solution. CHEMOSPHERE 2023; 341:140086. [PMID: 37678593 DOI: 10.1016/j.chemosphere.2023.140086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Both environment and human beings were menaced by the widespread application of radioactive uranium, high-performance and effective elimination of uranium from wastewater is of important meaning for development of environmental sustainability in the future. In this study, the water-stable MOF material and the highly crystalline COF were compounded by a mild hydrothermal strategy, which achieved efficient removal of U(VI) through the synergistic effect. The composites showed the characteristics of both COFs and MOFs, which will possess higher stability, larger surface area and faster adsorption efficiency that cannot be carried out by a single component. Batch experiments and characterizations (SEM, TEM, XRD, FT-IR, BET, XPS, etc.) indicated that UiO-66-NH2@LZU1 had more stable and multi-layer pore structure and rich active functional groups. The Langmuir model and the pseudo-second-order kinetics fitting was more suitable for the U(VI) elimination process. The greatest uranium adsorbing capacity of UiO-66-NH2@LZU1 (180.4 mg g-1) was observed to exceed the UiO-66-NH2 (108.8 mg g-1) and COF-LZU1 (65.8 mg g-1), which reached the excellent hybrid effects. Furthermore, FT-IR and XPS analyses confirmed that the most nitrogen-containing group from COF-LZU1 and oxygen-containing group of UiO-66-NH2 could be combined with U(VI). In addition, electrostatic interaction was also a mechanism during the removal process. This work displayed that UiO-66-NH2@LZU1 was a prospective hybrid material for radioactive waste remediation. The compound method and application mentioned in this work had provided a theoretical basis for designing and developing multi-functional composite adsorbents, which contributed to the development of new materials for radioactive wastewater treatment technologies.
Collapse
Affiliation(s)
- Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Bing Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Dedong Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Wen Yao
- School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Zixuan Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hairui Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
12
|
Zhang Y, Huang S, Mei B, Tian X, Jia L, Sun N. Magnetite/β-cyclodextrin/fly ash composite as an effective and recyclable adsorbent for uranium(VI) capture from wastewater. CHEMOSPHERE 2023; 331:138750. [PMID: 37105305 DOI: 10.1016/j.chemosphere.2023.138750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
As a novel adsorbent for the separation of uranium(VI) from wastewater, Magnetite/β-cyclodextrin/fly ash composite (Fe3O4/β-CD/FA) was first prepared via a chemical coprecipitation technology. The characterization results indicated that Fe3O4 and β-CD had been successfully loaded on FA, which had brought abundant oxygen-containing functional groups, providing numerous adsorptive sites for the removal of uranium(VI). At pH = 5.0 and T = 25 °C, the maximum uranium(VI) removal efficiency and capacity of Fe3O4/β-CD/FA were higher to 97.8% and 444.4 mg g-1, respectively. Pseudo-second-order and Langmuir models fitted better with the experimental data, illustrating that chemical adsorption dominated the uranium(VI) removal process. In addition, Fe3O4/β-CD/FA showed good anti-interference ability and recoverability. After five cycles, the removal rate of uranium(VI) on Fe3O4/β-CD/FA was still higher to 90.4%. The immobilization of uranium(VI) on Fe3O4/β-CD/FA was mainly ascribed to the synergism of redox reaction, complex reaction, chemical reaction and electrostatic interaction. Given the above, Fe3O4/β-CD/FA would be regarded as an efficacious, green and promising adsorbent for uranium(VI) separation from wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Sun
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
13
|
Hu QH, Wang YG, Gao X, Shi YZ, Lin S, Liang RP, Qiu JD. Halogen microregulation in metal-organic frameworks for enhanced adsorption performance of ReO 4-/TcO 4. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130744. [PMID: 36630874 DOI: 10.1016/j.jhazmat.2023.130744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Effective and selective removal of 99TcO4-, one of the most nuisance radionuclides in nuclear waste, is highly desirable but remains a significant challenge. Herein, two isostructural MOFs, NCU-3-X (X = Cl, Br) were constructed by ZnX2 coordinated to nitrogen-containing neutral ligand tri(4-(1H-imidazole-1-l) phenyl) amine for efficient adsorption ReO4-/TcO4-. Owning to the twofold interpenetrating structure, both of them exhibit strong alkaline resistance. Consequently, NCU-3-Br exhibited superior adsorption performances with a maximum capacity as high as 483 mg/g, which is 2.23 times larger than that of NCU-3-Cl. The primary reasons accounting for the enhanced adsorption performances of NCU-3-Br are that compared to chlorine atoms, the smaller electronegativity of bromine atoms as halogen bonds donor can facilitate the formation of σ-holes, enhance positively charged skeleton, and reduce the adsorption energy associated with ReO4-/TcO4-. In addition, the one-dimensional hydrophobic channels in the NCU-3-Br framework enable NCU-3-Br to have highly selective toward ReO4-, which has a low relative charge density against interfering ions. The SRS simulation removal experiment further confirmed the excellent adsorption capacity of NCU-3-Br to ReO4-/TcO4-. This work illustrated that the halogenated new strategy incorporated different halogen atoms into MOF skeletons can dramatically modulate the adsorption performances for ReO4-/TcO4-.
Collapse
Affiliation(s)
- Qing-Hua Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - You-Gan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yu-Zhen Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sen Lin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
14
|
Liu Y, Zhou H, Zhou X, Jin C, Liu G, Huo S, Chu F, Kong Z. Natural phenol-inspired porous polymers for efficient removal of tetracycline: Experimental and engineering analysis. CHEMOSPHERE 2023; 316:137798. [PMID: 36634714 DOI: 10.1016/j.chemosphere.2023.137798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/13/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Efficient and feasible removal of trace antibiotics from wastewater is extremely important due to its environmental persistence, bioaccumulation, and toxicity, but still remains a huge challenge. Herein, three natural phenol-inspired porous organic polymers were fabricated from natural phenolic-derived monomers (p-hydroxy benzaldehyde, 2,4-dihydroxy benzaldehyde and 2,4,6-trihydroxy benzaldehyde) and melamine via polycondensation reaction. Characterization highlighted that the increasing contents of hydroxyl groups in monomers induced an increase of the polymer total porosity and promoted the formation of a highly microporous structure. With mesopore-dominated pore (average pore diameter 9.6 nm) and large pore volume (1.78 cm3/g), p-hydroxy benzaldehyde-based porous polymer (1-HBPP) exhibited ultra-high maximum adsorption capacity (qmax) of 697.6 mg/g for tetracycline (TC) antibiotic. Meanwhile, the porous networks and plentiful active sites of 1-HBPP enabled fast adsorption kinetics (within 10 min) for TC removal, which could be well described by the pseudo-second-order model. Dynamic adsorption studies showed that 1-HBPP could be used in fixed-bed adsorption column (FBAC) with high removal efficiency (breakthrough volume per unit mass, 13.2 L/g) and dynamic adsorption capacity (201.6 mg/g), which were much higher than other reported adsorbents. The breakthrough curves both well matched with Thomas and Yoon-Nelson models in FBAC treatment. Moreover, removal mechanism analysis affirmed that pore-filling, hydrogen bonding, electrostatic interactions and π-π stacking interactions were main driving forces for TC adsorption. The prepared natural phenol-inspired porous adsorbents show great potential in antibiotics removal from wastewater, and this strategy would promote the sustainable and high-value utilization of natural phenolic compounds.
Collapse
Affiliation(s)
- Yunlong Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyan Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China.
| |
Collapse
|
15
|
Guo L, Peng L, Li J, Zhang W, Shi B. Simultaneously efficient adsorption and highly selective separation of U(VI) and Th(IV) by surface-functionalized lignin nanoparticles: A novel pH-dependent process. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130123. [PMID: 36270193 DOI: 10.1016/j.jhazmat.2022.130123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The simultaneous removal and selective separation of U(VI) and Th(IV) via adsorption remain challenging due to their strong mobility, reactivity, and similar chemical properties. Thus, a surface-functioned lignin nanoparticle (AL-PEI) was synthesized to adsorb U(VI)/Th(IV) in a unitary system via a pH-dependent process. In alkaline solution, AL-PEI exhibited excellent adsorption performance, and the maximum adsorption capacities for U(VI) and Th(IV) reached 392 and 396 mg/g, respectively. Discrepantly in acidic solution, the adsorption performance of AL-PEI for U(VI) could still reach a high capacity (332 mg/g), whereas highly limited adsorption capacity (less than 40 mg/g) for Th(IV) was obtained, and the separation factor of U(VI) from U(VI)-Th(IV) matrix significantly reached 6662 in 3 M of the HNO3 medium. The simultaneously efficient adsorption in alkaline solution and highly selective separation performance in acidic solution of AL-PEI also showed excellent anti-ions interference capacities, high reusability, and strong stability. This study is the first to apply lignin fabricating radiation-resistant adsorbent material, and the adsorbent displays good performance for U(VI)/Th(IV) removal and selective separation via a novel pH-dependent process, which is important to the green and sustainable development of nuclear energy and environmental protection.
Collapse
Affiliation(s)
- Lijun Guo
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Liangqiong Peng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Jiheng Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Wenhua Zhang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| | - Bi Shi
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
16
|
Synthesis and characterization of hydrogel-based magnetite nanocomposite adsorbents for the potential removal of Acid Orange 10 dye and Cr(VI) ions from aqueous solution. Int J Biol Macromol 2023; 227:27-44. [PMID: 36528140 DOI: 10.1016/j.ijbiomac.2022.12.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Magnetic responsive hydrogels (CMX-cl-P4VP/M-NPs) were successfully synthesized through in situ co-precipitation procedure and investigated using various techniques. The surface morphology analysis revealed that the M-NPs were uniformly distributed within the hydrogel matrix and had average sizes ranging from 4.98 to 15.02 nm. The graft copolymer containing nanoparticles exhibited a sensitive magnetic response, and their recovery could be facilitated by applying a magnetic field. The purpose of this research is to study the ability of the prepared magnetic hydrogel to remove AO-10 dye and hexavalent chromium ions (Cr(VI)) from the aqueous solution under various factors, namely contact time, pH, amount of adsorbent, coexisting ions and AO-10 and Cr(VI) concentrations. The outcomes of the batch adsorption demonstrated that the adsorbent hydrogel incorporated with a low percentage (10 %) of M-NPs had a strong affinity for the removal of AO-10 dye and Cr(VI) ions at an optimum pH = 3, and the removal percentage reached 99.3 and 97.4 % for 500 mg L-1 and 300 mg L-1 of AO-10 dye and Cr(VI) ions within 90, 50 min, respectively. The data were well-fitted by pseudo-first-order kinetics. The maximum adsorption capacities of AO-10 dye and Cr(VI) ions onto adsorbent were 2448 and 574.7 mg g-1 at 298 K, calculated from the Langmuir model.
Collapse
|
17
|
Benettayeb A, Seihoub FZ, Pal P, Ghosh S, Usman M, Chia CH, Usman M, Sillanpää M. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:447. [PMID: 36770407 PMCID: PMC9920024 DOI: 10.3390/nano13030447] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Adsorption is the most widely used technique for advanced wastewater treatment. The preparation and application of natural renewable and environmentally friendly materials makes this process easier and more profitable. Chitosan is often used as an effective biomaterial in the adsorption world because of its numerous functional applications. Chitosan is one of the most suitable and functionally flexible adsorbents because it contains hydroxyl (-OH) and amine (-NH2) groups. The adsorption capacity and selectivity of chitosan can be further improved by introducing additional functions into its basic structure. Owing to its unique surface properties and adsorption ability of chitosan, the development and application of chitosan nanomaterials has gained significant attention. Here, recent research on chitosan nanoparticles is critically reviewed by comparing various methods for their synthesis with particular emphasis on the role of experimental conditions, limitations, and applications in water and wastewater treatment. The recovery of pollutants using magnetic nanoparticles is an important treatment process that has contributed to additional development and sustainable growth. The application of such nanoparticles in the recovery metals, which demonstrates a "close loop technology" in the current scenarios, is also presented in this review.
Collapse
Affiliation(s)
- Asmaa Benettayeb
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Fatima Zohra Seihoub
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Preeti Pal
- Accelerated Cleaning Systems India Private Limited, Sundervan Complex, Andheri West, Mumbai 400053, India
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Muhammad Usman
- School of Civil Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), No. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu 611731, China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
18
|
Kamali N, Ghasemi JB, Mohammadi Ziarani G, Moradian S, Badiei A. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions. Chin J Chem Eng 2023; 53:374-380. [DOI: 10.1016/j.cjche.2022.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Zhang X, Liu R, Wang H, Liu L, Yue C. Fabrication of Phosphate-Containing Mesoporous Carbon for Fast and Efficient Uranium (VI) Extraction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Zhang J, Xie L, Ma Q, Liu Y, Li J, Li Z, Li S, Zhang T. Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: Functional groups response and dominant reduction species. CHEMOSPHERE 2023; 311:137174. [PMID: 36368528 DOI: 10.1016/j.chemosphere.2022.137174] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Zero-valent iron biochar composites (ZVI/BC) have been widely used to remove Cr(VI) from water. However, the application of ZVI/BC prepared by the carbothermal reduction was limited by the non-uniform dispersion of ZVI on the biochar surface. In this work, ball milling technique was introduced to modify ZVI/BC. Results showed that after ball milling, the maximum Langmuir adsorption capacity for Cr(VI) was 117.7 mg g-1 (298 K) which was 2.08 times higher than ZVI/BC. The initial adsorption rate of the Elovich model increased from 4.57 × 102 mg g-1 min-1 to 3.74 × 109 mg g-1 min-1 after ball milling. Dispersibility of ZVI on biochar surface and contact between ZVI and biochar were improved by the ball milling, thus accelerating the electron transfer. Besides, ball milling increased the content of oxygen-containing functional groups in biochar, contributing to the chemisorption of Cr(VI). The response sequence of oxygen-containing functional groups was analyzed by two-dimensional correlation spectroscopy, indicating that Cr(VI) preferentially complexed with phenolic -OH. Shielding experiments showed that Fe (0) was the dominant reducing species with a contribution of 73.4%, followed by surface-bound Fe(II) (21.3%) and dissolved Fe2+ (5.24%). Density functional theory calculations demonstrated that ball milled ZVI/BC improved the adsorption affinity and electron transfer flux towards Cr(VI) by introducing phenolic -OH and Fe (0). Combining all the textural characterization, the Cr(VI) removal mechanism of the ball milled ZVI/BC could be proposed as adsorption, reduction, and precipitation. Eventually, stable Cr-Fe oxides (FeOCr2O3 and Cr1·3Fe0·7O3) were formed. This work not only provides a simple method to modify ZVI/BC to remove Cr(VI) in water efficiently and rapidly, but also improves the mechanistic insight into the Cr(VI) removal by iron-carbon composites via the response sequence of functional group analysis and the quantitative analysis of reducing species.
Collapse
Affiliation(s)
- Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Tannin-coated PVA/PVP/PEI nanofibrous membrane as a highly effective adsorbent and detoxifier for Cr(VI) contamination in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Yilmaz Camoglu A, Ozdes D, Duran C. Adsorption Behaviour of EDTA Modified Magnetic Fe3O4 Coated Brewed Tea Waste on Cr(VI) Removal. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Jing W, Yin L, Lin X, Yu Y, Lian D, Shi Z, Chen P, Tang M, Yang C. Simultaneous Adsorption of Cu 2+ and Cd 2+ by a Simple Synthesis of Environmentally Friendly Bamboo Pulp Aerogels: Adsorption Properties and Mechanisms. Polymers (Basel) 2022; 14:4909. [PMID: 36433035 PMCID: PMC9693634 DOI: 10.3390/polym14224909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The highly efficient, pollution-free and degradable biomass-based adsorbents used for the purification of wastewater are currently being highlighted in the research. Bamboo is an excellent raw material for pulp production due to its characteristics of fast growth, wide distribution and high cellulose content. In this study, a tannin/chitosan/bamboo pulp aerogel (TCPA), an environmentally friendly, renewable and low-density adsorbent, was synthesized using a simple freeze-drying method and analyzed by FTIR, XPS, SEM, TEM, TGA and surface area and porosity methods. TCPA has a large specific surface area (137.33 m2/g) and 3D porous structure, and its surface has multiple functional groups including amino, carboxyl and hydroxyl groups, which lead to a simultaneous absorption effect with Me2+ (Cu2+ and Cd2+). The maximum adsorption capacity for Cu2+ and Cd2+ of the TCPA was 72.73 mg/g and 52.52 mg/g, respectively. The adsorption processes of Me2+ by TCPA follow the pseudo-second-order model and Langmuir isotherm mode, and the adsorption processes are spontaneous and endothermic. The study provides a promising candidate for the treatment of wastewater containing heavy metal mixtures.
Collapse
Affiliation(s)
- Wenxiang Jing
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621002, China
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Lijiang Yin
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Xiaoyan Lin
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621002, China
| | - Ying Yu
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Dongming Lian
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Zhaoming Shi
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Peng Chen
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Min Tang
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| | - Chai Yang
- Yibin Industrial Academy of Forestry and Bamboo, Yibin 644005, China
| |
Collapse
|
24
|
Patel K, Sutar AK, Maharana T. Synthesis of carboxylic graphene o
xide‐carboxymethyl
chitosan composite and its applications toward the remediation of
U
6
+
, Pb
2+
, Cr
6+
, and Cd
2+
ions from aqueous solutions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry National Institute of Technology Raipur India
| | | | | |
Collapse
|
25
|
Liu S, Hu Z, Wang J, Tang N, Guo D, Ou H. Eruption pore matrix with cooperative chelating of spatially continued ligands for rapid and selective removal of uranium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Xie Y, Hu J, Esmaeili H, Wang D, Zhou Y. A review study on wastewater decontamination using nanotechnology: Performance, mechanism and environmental impacts. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Full-Lignin-Based Adsorbent for Removal of Cr(VI) from Waste Water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
He MJ, Xu LQ, Feng B, Hu JB, Chang SS, Liu GG, Liu Y, Xu BH. Tannin-Derived Hard Carbon for Stable Lithium-Ion Anode. Molecules 2022; 27:molecules27206994. [PMID: 36296584 PMCID: PMC9611679 DOI: 10.3390/molecules27206994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Graphite anodes are well established for commercial use in lithium-ion battery systems. However, the limited capacity of graphite limits the further development of lithium-ion batteries. Hard carbon obtained from biomass is a highly promising anode material, with the advantage of enriched microcrystalline structure characteristics for better lithium storage. Tannin, a secondary product of metabolism during plant growth, has a rich source on earth. But the mechanism of hard carbon obtained from its derivation in lithium-ion batteries has been little studied. This paper successfully applied the hard carbon obtained from tannin as anode and illustrated the relationship between its structure and lithium storage performance. Meanwhile, to further enhance the performance, graphene oxide is skillfully compounded. The contact with the electrolyte and the charge transfer capability are effectively enhanced, then the capacity of PVP-HC is 255.5 mAh g−1 after 200 cycles at a current density of 400 mA g−1, with a capacity retention rate of 91.25%. The present work lays the foundation and opens up ideas for the application of biomass-derived hard carbon in lithium anodes.
Collapse
Affiliation(s)
- Ming-Jun He
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- 3rd Division Convergence Media Center, Tumushuke 843900, China
| | - Lai-Qiang Xu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bing Feng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Bo Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Center Astrum Innovations Limited, Wisdom Park, Country Garden, Changsha 410006, China
- Correspondence: (J.-B.H.); (G.-G.L.)
| | - Shan-Shan Chang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Gong-Gang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Center Astrum Innovations Limited, Wisdom Park, Country Garden, Changsha 410006, China
- Correspondence: (J.-B.H.); (G.-G.L.)
| | - Yuan Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bing-Hui Xu
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
29
|
Chen B, Ding L, Wang Y, Zhang Y. High efficient adsorption for thorium in aqueous solution using a novel tentacle-type chitosan-based aerogel: Adsorption behavior and mechanism. Int J Biol Macromol 2022; 222:1747-1757. [DOI: 10.1016/j.ijbiomac.2022.09.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
30
|
Subhiksha V, Okla MK, Alaraidh IA, Mohebaldin A, Soufan W, Abdel-Maksoud MA, Abdelaziz RF, Thomas AM, Raju LL, Khan SS. A prominent dual heterojunction framed CuWO 4/Bi 2WO 6/MnS ternary NCs for para-chlorophenol degradation, Cr(VI) reduction & toxicity studies. CHEMOSPHERE 2022; 302:134802. [PMID: 35504466 DOI: 10.1016/j.chemosphere.2022.134802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
In account of environmental remediation, an ideal photocatalyst was fabricated for the effective treatment of water systems. Herein, dual heterojunctions framed CuWO4/Bi2WO6/MnS nanocomposite (NCs) was synthesized via simple co-precipitation method followed by ultra-sonicated assisted route. The prepared NCs were investigated its photocatalytic degradation performance using para-chlorophenol (4-CP) and reduction of chromium VI (Cr (VI)) under visible light irradiation. The photocatalyst were characterized by various analytical techniques including XRD, HR-TEM, XPS, UV-vis DRS, FE-SEM, EIS, PL, ESR, Raman and N2 adsorption and desorption studies. The excellent photodegradation of 4-CP was observed within 180 min by the NCs. Similarly, the Cr (VI) reduction was about 97% within 140 min. The effect of pH and influence of different dosage of NCs and 4-CP on the photodegradation efficiency was investigated. The reusability and stability of the NCs was examined over 6 consecutive runs where the XRD and XPS confirm the structural stability of the prepared NCs. The scavenging experiment were carried out to elucidate the mechanism and the active species involved were O2-• and OH• radicals. The TOC analysis affirmed the complete mineralization of the prepared NCs. The ecotoxicity analysis was carried out to determine the toxicity effect of intermediates using ECOSAR software and the end product toxicity was also evaluated against E. coli and S. epidermis. The end product toxicity study also confirmed that the degraded product was less toxic compared to parent compound. Further, the genotoxicity study was done to understand the environmental impact using allium cepa and results confirms that there are no causes of cytotoxicity & genotoxicity by the prepared NCs. Therefore, the prepared NCs can be economical, efficient with excellent photocatalytic performance and environment friendly.
Collapse
Affiliation(s)
- V Subhiksha
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
31
|
Bisaria K, Sinha S, Iqbal HMN, Singh R. Ultrasonication expedited As(III) adsorption onto chitosan impregnated Ni-Fe layered double hydroxide biosorbent: Optimization studies and artificial intelligence modelling. ENVIRONMENTAL RESEARCH 2022; 212:113184. [PMID: 35358544 DOI: 10.1016/j.envres.2022.113184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Chitosan intercalated Ni-Fe layered double hydroxide (Ni-Fe LDH/Ch), prepared by co-precipitation was examined for adsorptive elimination of arsenic (III). Energy Dispersive X-ray analysis, X-ray diffraction, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, and Dynamic Light Scattering validated the successful synthesis of the composite with enhanced adsorption sites. Maximal As(III) removal was obtained at adsorbent dose 1 gL-1, pH 7, ultrasonication time 30 min, temperature 298 K, and initial arsenic concentration 50 mgL-1. The experimentally obtained values fit the Langmuir isotherm and pseudo-second-order dynamics well (R2 > 0.98), while thermodynamic evaluation confirmed exothermic and spontaneous reaction (ΔG = -8.13 kJ mol-1). Further, adaptive neuro-fuzzy inference system and artificial neural network successfully predicted As(III) removal percentage with a high correlation coefficient (R2 > 0.94) and low statistical errors (MSE< 0.002, AARE< 0.063). The prepared material successfully brought down arsenic level by 62% in a natural water sample and showed good reusability up to 5 consecutive treatment cycles. The results recommended that Ni-Fe LDH/Ch has ample potential for arsenic remediation, and further investigations can be carried out for large-scale applications.
Collapse
Affiliation(s)
- Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
32
|
Yang S, Wu G, Song J, Hu B. Preparation of chitosan-based asymmetric electrodes by co-imprinting technology for simultaneous electro-adsorption of multi-radionuclides. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Sun P, Wang Z, An S, Zhao J, Yan Y, Zhang D, Wu Z, Shen B, Lyu H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115211. [PMID: 35561491 DOI: 10.1016/j.jenvman.2022.115211] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Over the past decade, biochar-supported nZVI composites (nZVI/biochar) have been developed and applied to treat various pollutants due to their excellent physical and chemical properties, especially in the field of chromium (VI) removal. This paper reviewed the factors influencing the preparation and experiments of nZVI/biochar composites, optimization methods, column experimental studies and the mechanism of Cr(VI) removal. The results showed that the difference in raw materials and preparation temperature led to the difference in functional groups and electron transfer capabilities of nZVI/biochar materials. In the experimental process, pH and test temperature can affect the surface chemical properties of materials and involve the electron transfer efficiency. Elemental doping and microbial coupling can effectively improve the performance of nZVI/biochar composites. In conclusion, biochar can stabilize nZVI and enhance electron transfer in nZVI/biochar materials, enabling the composite materials to remove Cr(VI) efficiently. The study of column experiments provides a theoretical basis for applying nZVI/biochar composites in engineering. Finally, the future work prospects of nZVI/biochar composites for heavy metal removal are introduced, and the main challenges and further research directions are proposed.
Collapse
Affiliation(s)
- Peng Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengwei An
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jian Zhao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yichen Yan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Daijie Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
34
|
Efficient adsorptive and reductive removal of U(VI) and Se(IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Deng J, Liu Y, Li H, Huang Z, Qin X, Huang J, Zhang X, Li X, Lu Q. A novel biochar-copolymer composite for rapid Cr(VI) removal: Adsorption-reduction performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Li Z, Zhao Z, Fan J, Wang W, Li L, Liu J. Spinel ferrite-enhanced Cr(VI) removal performance of micro-scale zero-valent aluminum: Synergistic effects of oxide film destruction and lattice spacing expansion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Wang C, Jiang A, Liu X, Yuen Koh K, Yang Y, Chen JP, Li K. Amorphous metal-organic framework UiO-66-NO2 for removal of oxyanion pollutants: Towards improved performance and effective reusability. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Polyethyleneimine incorporated chitosan/α-MnO 2 nanorod honeycomb-like composite foams with remarkable elasticity and ultralight property for the effective removal of U(VI) from aqueous solution. Int J Biol Macromol 2022; 218:190-201. [PMID: 35872307 DOI: 10.1016/j.ijbiomac.2022.07.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
The development of new adsorbents is needed to address the environmental challenges of radioactive wastewater treatment. Herein we reported a novel polyethyleneimine incorporated chitosan/α-MnO2 nanorod honeycomb-like composite (PCM) foam with remarkable elasticity and ultralight property for U(VI) removal. Among different PCM sorbents, PCM-40 possessed the highest sorption capacity for U(VI) due to its highly developed macroporous structure and high content of amine/imine groups. The kinetics were well-simulated by the pseudo-second-order model, indicating chemisorption as the rate-controlling step. The isotherms could be described by the Langmuir model, suggesting mono-layer homogeneous sorption of U(VI). The maximum sorption U(VI) capacity for PCM-40 reaches up to 301.9 mg/g at pH 4.5 and 298 K. The thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption process. The main sorption mechanism is related to the complexation of uranyl ions with the amine/imine and hydroxyl groups. The high sorption capacity, fast kinetic rate and relatively good selectivity of PCM-40 highlights its promising application in radioactive pollution cleanup.
Collapse
|
39
|
Dash B, Jena SK, Rath SS. Adsorption of Cr (III) and Cr (VI) ions on muscovite mica: Experimental and molecular modeling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Li Z, Wang S, Dong Y, Miao X, Xiao B, Yang J, Zhao J, Huang R. Amidoxime functionalized chitosan for uranium sequestration in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113636. [PMID: 35588624 DOI: 10.1016/j.ecoenv.2022.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Amidoxime functionalized chitosan (AC) was recommended as a chelator for uranium sequestration in vivo in this study, and the structure-activity relationship was also explored. Compared with ZnNa3-DTPA, which was a commercial uranium mobilization drug, AC exhibited excellent biocompatibility and uranium removal efficiency, whether by injection or orally, which could reduce the amounts of uranium deposited in kidneys and femurs by up to 43.6% and 32.3%. In particular, ACs still possessed the ability to mobilize uranium in vivo even if administration was delayed for 72 h.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Siyi Wang
- School of Pharmacy, Henan University, Henan 475000, China
| | - Yipu Dong
- Guangdong Pharmaceutical University, Guangdong 511436, China
| | - Xiaoyao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bingkun Xiao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianyun Yang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianfeng Zhao
- China Ocean Aviation Group, Ltd., Beijing 100070, China
| | - Rongqing Huang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
41
|
de Araujo LG, Vieira LC, Canevesi RLS, da Silva EA, Watanabe T, de Padua Ferreira RV, Marumo JT. Biosorption of uranium from aqueous solutions by Azolla sp. and Limnobium laevigatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45221-45229. [PMID: 35146605 DOI: 10.1007/s11356-022-19128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The main goal of this study was to assess alternatives to the current challenges on environmental quality and circular economy. The former is here addressed by the treatment of radioactively contaminated solutions, and the latter by using abundant and low-cost biomass. In this paper, we examine the biosorption of hexavalent uranium (U(VI)) in a batch system using the macrophytes Limnobium laevigatum and Azolla sp. by three operational parameters: biomass dose, metal ion concentration, and contact time. Simulated solutions were firstly addressed with two biomasses, followed by studies with real liquid organic radioactive waste (LORW) with Azolla sp. The batch experiments were carried out by mixing 0.20 g biomass in 10 mL of the prepared solution or LORW. The total contact time employed for the determination of the equilibrium times was 240 min, and the initial U(VI) concentration was 0.63 mmol L-1. The equilibrium times were 15 min for L. laevigatum and 30 min for Azolla sp. respectively. A wide range of initial U(VI) concentrations (0.25-36 mmol L-1) was then used to assess the adsorption capacity of each macrophyte. Isotherm models validated the adsorption performance of the biosorption process. Azolla sp. presented a much higher U(VI) uptake (0.474 mmol g-1) compared to L. laevigatum (0.026 mmol g-1). When in contact with LORW, Azolla sp. removed much less uranium, indicating an adsorption capacity of 0.010 mmol g-1. In conclusion, both biomasses, especially Azolla sp., can be used in the treatment of uranium-contaminated solutions.
Collapse
Affiliation(s)
- Leandro Goulart de Araujo
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil.
| | - Ludmila Cabreira Vieira
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| | - Rafael Luan Sehn Canevesi
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645 - Jardim La Salle, Toledo, PR, 85903-000, Brazil
| | - Edson Antonio da Silva
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645 - Jardim La Salle, Toledo, PR, 85903-000, Brazil
| | - Tamires Watanabe
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| | | | - Júlio Takehiro Marumo
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
42
|
Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Zhang L, Wang H, Zhang Q, Wang W, Yang C, Du T, Yue T, Zhu M, Wang J. Demand-oriented construction of Mo 3S 13-LDH: A versatile scavenger for highly selective and efficient removal of toxic Ag(I), Hg(II), As(III), and Cr(VI) from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153334. [PMID: 35074376 DOI: 10.1016/j.scitotenv.2022.153334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Inspired by the classic ion-exchange reaction, a single phase material of Mg0.66Al0.34(OH)2(Mo3S13)0.03(NO3)0.14(CO3)0.07·H2O (Mo3S13-LDH) was masterly constructed by intercalating Mo3S132- into the MgAl-LDH gallery. Prepared Mo3S13-LDH displays excellent binding affinity and high selectivity for Ag(I) and Hg(II) in a mixed solution, in which an apparent selectivity order of Hg(II) > Ag(I) ≫ Pb(II), Cu(II), Ni(II), Co(II), Cd(II), and Mn(II) is observed. Enormous capture capacities (qmAg = 446.4 mg/g, qmHg = 354.6 mg/g) and fast equilibration time (within 60 min) place Mo3S13-LDH in the upper ranks of materials for such removal. For oxoanions, As(III) (HAsO32-) and Cr(VI) (CrO42-) can be specifically trapped by Mo3S13-LDH with comparable loading ability (qmAs = 61.8 mg/g, qmCr = 90.6 mg/g) in the coexistence of multiple interfering anions. Notably, high Hg(II) and Cr(VI) concentrations are finally reduced below the safe limit of drinking water. The excellent capture capacity of Mo3S13-LDH benefits from the rational design by following two aspects: (i) the multiple sulfur ligands in Mo3S132- groups give place to various capture modes and different affinity orders for target ions, and (ii) large-sized Mo3S132- groups widen the interlayer spacing of LDH, thereby accelerating the mass transfer process. Furthermore, the satisfactory structural stability of Mo3S13-LDH is also reflected through the unchanged hexagonal prismatic shape after adsorption. All of these highlight the great potential of Mo3S13-LDH for the application in water remediation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huiting Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
44
|
Xu M, Cai Y, Chen G, Li B, Chen Z, Hu B, Wang X. Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1443. [PMID: 35564151 PMCID: PMC9100083 DOI: 10.3390/nano12091443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
With the fast development of industry and nuclear energy, large amounts of different radionuclides are inevitably released into the environment. The efficient solidification or elimination of radionuclides is thereby crucial to environmental pollution and human health because of the radioactive hazardous of long-lived radionuclides. The properties of negatively or positively charged radionuclides are quite different, which informs the difficulty of simultaneous elimination of the radionuclides. Herein, we summarized recent works about the selective sorption or catalytic reduction of target radionuclides using different kinds of nanomaterials, such as carbon-based nanomaterials, metal-organic frameworks, and covalent organic frameworks, and their interaction mechanisms are discussed in detail on the basis of batch sorption results, spectroscopy analysis and computational calculations. The sorption-photocatalytic/electrocatalytic reduction of radionuclides from high valent to low valent is an efficient strategy for in situ solidification/immobilization of radionuclides. The special functional groups for the high complexation of target radionuclides and the controlled structures of nanomaterials can selectively bind radionuclides from complicated systems. The challenges and future perspective are finally described, summarized, and discussed.
Collapse
Affiliation(s)
- Min Xu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (M.X.); (Y.C.); (B.H.)
- Zhejiang Zhongguangheng Testing Technology Co., Ltd., Shaoxing 311899, China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (M.X.); (Y.C.); (B.H.)
| | - Guohe Chen
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (M.X.); (Y.C.); (B.H.)
| | - Bingfeng Li
- Power China Sichuan Electric Power Engineering Co., Ltd., Chengdu 610041, China;
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China;
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (M.X.); (Y.C.); (B.H.)
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (M.X.); (Y.C.); (B.H.)
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China;
| |
Collapse
|
45
|
Xu X, Li Y, Hu X, Xie G, Xu H, Gao M, Zhang X, Zhang R, Tang C, Hu X. Effect of Humic Acid on the Adsorption/Desorption Behaviors of Trivalent Chromium on Calcium Modified Montmorillonite and Kaolinite. ChemistrySelect 2022. [DOI: 10.1002/slct.202104302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xinyu Xu
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Yan Li
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Xinjiang Hu
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Guangyu Xie
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Hao Xu
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Mengxi Gao
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Xuefei Zhang
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Riqing Zhang
- College of Forestry Central South University of Forestry and Technology Changsha 410004 China
| | - Chunfang Tang
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| | - Xi Hu
- College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004
| |
Collapse
|
46
|
|
47
|
Gao S, Liu Y. Potassium-assisted synthesis of SUZ-4 zeolite as an efficient adsorbent for Pb2+ removal from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Research on the effect of Deinococcus radiodurans transformed by dsrA-flr-2 double gene on the enrichment performance of uranium(VI). J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Yu K, Jiang P, Wei J, Yuan H, Xin Y, He R, Wang L, Zhu W. Enhanced uranium photoreduction on Ti 3C 2T x MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127823. [PMID: 34823956 DOI: 10.1016/j.jhazmat.2021.127823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic reduction of soluble hexavalent uranium (U(VI)) is a novel and efficient avenue to enriching U(VI), where the free U(VI) is firstly bound on the surface of photocatalysts and then reduced to insoluble tetravalent uranium (U(IV)) by photoelectrons. Therefore, constructing the efficient U(VI) binding sites on photocatalysts is an efficient strategy to boost catalytic activity toward U(VI) photoreduction. Herein, we successfully constructed an efficient catalyst for U(VI) photoreduction by depositing Ag nanoparticles on Ti3C2Tx MXene with abundant U(VI) binding sites (Ag/Ti3C2Tx-O). Impressively, the U(VI) extracting mass over Ag/Ti3C2Tx-O under light reached up to 1257.6 mg/g in 120 min, which was almost 11 times as high as that without light. Further mechanistic studies indicated that the U(VI) binding sites on Ti3C2Tx MXene in Ag/Ti3C2Tx-O were beneficial to the reduction of U(VI) by significantly decreasing its reduction potential. More importantly, hot electrons generated by Ag nanoparticles were transferred into the binding sites to easily reduce the bound U(VI), resulting in the remarkable performance of Ag/Ti3C2Tx-O during U(VI) enrichment.
Collapse
Affiliation(s)
- Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Pengyan Jiang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Jiacheng Wei
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Haibo Yuan
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yue Xin
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Liangbing Wang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
50
|
Patel K, Sutar AK, Maharana T. Microwave-assisted preparation of carboxylic graphene oxide-chitosan composite for adsorption of uranium and heavy toxic metals in water samples. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2045320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Khilawan Patel
- Department of Chemistry, National Institute of Technology, Raipur, India
| | - Alekha Kumar Sutar
- Department of Chemistry, Gangadhar Mehar University, Sambalpur, India
- Department of Chemistry, Ravenshaw University, Cuttack, India
| | | |
Collapse
|