1
|
Li L, Zhang L. The efficient removal of high-toxic Cr(VI) by the simply modified sepiolite synergized with oxalic acid under UV. ENVIRONMENTAL TECHNOLOGY 2025:1-11. [PMID: 40383525 DOI: 10.1080/09593330.2025.2500784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/13/2025] [Indexed: 05/20/2025]
Abstract
The modified sepiolite (H-Sep-OH) with high catalytic activity was simply prepared and used for the enhancement of hexavalent chromium(Cr(VI)) removal from water by oxalic acid (Ox) photoreduction. The effects of H-Sep-OH dosage, Cr (VI) concentration, initial concentration of Ox and initial pH on the Cr (VI) removal in the Ox + H-Sep-OH + UV system were investigated in detail. The mechanism of Cr (VI) removal of the Ox + H-Sep-OH + UV system was discussed by the effect of initial pH, the change of pH and Cr species in the solution during the process, the free-radical scavenging test, and the IR, XRD, UV-Vis diffuse reflectance and Mott-Schottky analysis. The results showed that H-Sep-OH could significantly synergize with Ox reduction to remove Cr(VI) under UV, and the concentration of Ox in the aqueous solution and the dosage of H-Sep-OH determined the amount of reducing substances and the speed of Cr(VI) reduction. Amorphous SiO2 in the H-Sep-OH played an important catalytic role in the photoreduction of Cr(VI). During the Cr(VI) removal process in the Ox + H-Sep-OH + UV system, the reductive removal of Cr(VI) from the water was achieved synergistically by the effectively separated electron(e-) (generated from the SiO2 in H-Sep-OH under UV irradiation), and the produced •CO2 - (derived from photolysis of Ox and the conversion of Ox by water and hole(h+).).
Collapse
Affiliation(s)
- Lingzhen Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Ling Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Kumar D, Bano D, Chandra S, Kumar B, Kumar V, Yadav PK, Hasan SH. Highly sensitive electrochemical sensing of ascorbic acid (vitamin C) using Pd-doped MnO 2 supported on carbon quantum dots (Pd-MnO 2@CQD) in water and fruit juices. ANAL SCI 2025:10.1007/s44211-025-00787-9. [PMID: 40335880 DOI: 10.1007/s44211-025-00787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
The Pd-MnO2 nanoparticles attached to carbon quantum dots nanocomposite were synthesized using the green synthesis and hydrothermal process. Characterization of the as-prepared nanocomposite was intensively performed by FT-IR, powder XRD, XPS, and HR-TEM analysis. The synthesized nanomaterial was further examined for its selective and sensitive ascorbic acid (ASA) sensing using a Pd-MnO2@CQD modified glassy carbon electrode (GCE). The Pd-MnO2@CQD nanocomposite exhibits a distinct and improved peak current of ASA when compared to electrodes treated with Pd-MnO2 and bare GCE. The designed sensor has excellent performance, with a linear range of 10-1500 μM, a low detection limit of 0.14 μM (S/N = 3), a high sensitivity of 1.9671 μAµM-1 cm-2. Furthermore, the constructed sensor demonstrates good sensitivity for detecting ASA in a variety of real samples.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Nano-Materials Laboratory, IIT BHU, Varanasi, 221005, Uttar Pradesh, India
- Department of Chemistry, Chhadami Lal Jain P.G. College, Firozabad, Uttar Pradesh, 283203, India
| | - Daraksha Bano
- Department of Chemistry, Nano-Materials Laboratory, IIT BHU, Varanasi, 221005, Uttar Pradesh, India
- Regional Centre of Advance Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, Olomouc, 78371, Czech Republic
| | - Subhash Chandra
- Department of Chemistry, Bappa Shri Narain Vocational Post Graduate College, University of Lucknow, Lucknow, 226001, Uttar Pradesh, India
| | - Bharat Kumar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Chemistry, Nano-Materials Laboratory, IIT BHU, Varanasi, 221005, Uttar Pradesh, India
| | - Pradeep Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Syed Hadi Hasan
- Department of Chemistry, Nano-Materials Laboratory, IIT BHU, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chaúque BJM, de Amorim Nascimento FL, Silva KJS, Hoff RB, Goldim JR, Rott MB, Zanette RA, Verruck S. Solar-based technologies for removing potentially toxic metals from water sources: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3503-3530. [PMID: 39821874 DOI: 10.1007/s11356-025-35897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals. The performance and productivity of these methods in removing heavy metals such as arsenic (As), chromium (Cr), mercury (Hg), and uranium (U) from water still need to be comprehensively synthesized. Thus, this work aims to address that gap. The performance, potential, and challenges of real-world applications of conventional solar stills (CSS), membrane-based solar stills, and solar heterogeneous photocatalysis are concisely summarized and critically reviewed. CSS and membrane-based stills are highly effective (efficacy > 98%) in removing and capturing heavy metals from water. However, structural and functional improvements are needed to enhance productivity (especially for CSS) and usability in real-world environmental remediation and drinking water supply scenarios. Solar heterogeneous photocatalysis is highly effective in removing and/or converting As, Cr, Hg, and U into their non-toxic or less toxic forms, which subsequent processes can easily remove. Further research is necessary to evaluate the safety of photocatalytic materials, their integration into scalable solar reactors, and their usability in real-world environmental remediation applications.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Mestrado Profissional Em Pesquisa Clínica, Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa, Lichinga, Mozambique.
| | - Francisco Lucas de Amorim Nascimento
- Departamento de Zootecnia E Desenvolvimento Rural, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | | | - Rodrigo Barcellos Hoff
- Advanced Laboratory Section of Santa Catarina (SLAV/SC), Ministry of Agriculture and Livestock (MAPA), R. João Grumiche, 117 - Bloco T, São José, Santa Catarina, 88102-600, Brazil
| | - José Roberto Goldim
- Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande Do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande Do Sul, 90035-002, Brazil
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Silvani Verruck
- Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
| |
Collapse
|
4
|
Li J, Alamdari NE, Aksoy B, Parit M, Jiang Z. Integrated enzyme hydrolysis assisted cellulose nanofibril (CNF) fabrication: A sustainable approach to paper mill sludge (PMS) management. CHEMOSPHERE 2023:138966. [PMID: 37220796 DOI: 10.1016/j.chemosphere.2023.138966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
The landfilling of paper mill sludge (PMS) has been restricted or even banned in many countries due to the raised concern about greenhouse gas (GHG) emissions and contamination of the soil and water, calling for a sustainable PMS management approach. The potential valorization of PMS to nanomaterials combined with traditional biorefinery was examined in this work. Three types of PMS-derived cellulose nanofibrils (CNFs) were prepared and evaluated: enzymatically assisted CNF (AU: with in-house produced enzyme and CT: with commercial enzyme), mechanically pretreated CNF (BT), and chemically pretreated CNF by TEMPO oxidation (TEMPO). It was found that enzyme-assisted mechanical fibrillation-derived CNFs had a comparable average diameter (27.9 nm for AU and 22.7 nm for CT) with that produced from mechanical pretreatment (26.5 nm for BT) and TEMPO oxidation pretreatment (20.0 nm for TEMPO), and they showed the best drainage properties among the three types of CNF. The CNFs resulting from enzymatic pretreatment reduced 15% of energy consumption compared to the mechanical method and had better thermostability than TEMPO oxidation method. In addition, the on-site produced enzyme showed similar performance to the commercial enzymes towards the CNF properties. These findings provide new insights into a promising integrated strategy in engineering CNF from PMS with on-site enzyme production as a novel and sustainable approach for PMS management and valorization.
Collapse
Affiliation(s)
- Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Navid E Alamdari
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Burak Aksoy
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Mahesh Parit
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
5
|
Costa IGF, Ribeiro SRFL, Nascimento LL, Patrocinio AOT, Cardoso VL, Batista FRX, Reis MHM. Well-dispersed titanium dioxide and silver nanoparticles on external and internal surfaces of asymmetric alumina hollow fibers for enhanced chromium (VI) photoreductions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62508-62521. [PMID: 36944834 DOI: 10.1007/s11356-023-26528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Heterogenous photocatalysis is a suitable alternative for wastewater treatment. The supporting of the solid catalyst in a porous material is suggested to facilitate catalyst recovery and reuse. Here we propose for the first time the evaluation of supporting silver (Ag)-decorated titanium dioxide (TiO2) catalysts on internal and external surfaces of alumina hollow fibers with asymmetric pore size distribution. The produced catalysts were considered for Cr(VI) photoreductions. The ultrasound-assisted process potentialized the distribution of Ag nanoparticles on the TiO2 surface. The loading of Ag nanoparticles at concentrations greater than 5 wt% was necessary to improve the TiO2 activity for Cr(VI) photoreduction. The loading of Ag nanoparticles at 30 wt% improved the Cr(VI) photoreduction of the single TiO2 catalyst from 40.49 ± 0.98 to 55.00 ± 0.83% after 180 min of reaction. Suspended and supported Ag-decorated TiO2 catalysts achieved total Cr(VI) photoreduction after 21 h of reaction. The adjusted reaction rate constant with the externally supported Ag-TiO2 catalyst was 3.57 × 10-3 ± 0.18 × 10-3 min-1. Similar reaction rate constants were achieved with suspended and internally supported catalysts (approximately 2.70 × 10-3 min-1). After 10 sequential reuses, all catalysts presented similar Cr(VI) photoreductions of approximately 66%. Nevertheless, the use of the externally supported catalyst is suggested for Cr(VI) photoreductions due to its superior catalyst activity at least in the first reuse cycles.
Collapse
Affiliation(s)
- Igor G F Costa
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Stella R F L Ribeiro
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Lucas L Nascimento
- Laboratory of Photochemistry and Materials Science (LAFOT-CM), Institute of Chemistry, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science (LAFOT-CM), Institute of Chemistry, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Vicelma L Cardoso
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Fabiana R X Batista
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil
| | - Miria H M Reis
- Chemical Engineering Faculty, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, Santa Mônica, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
6
|
Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts 2023. [DOI: 10.3390/catal13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbon dots (CDs) have attracted considerable interest from the scientific community due to their exceptional properties, such as high photoluminescence, broadband absorption, low toxicity, water solubility and (photo)chemical stability. As a result, they have been applied in several fields, such as sensing, bioimaging, artificial lighting and catalysis. In particular, CDs may act as sole photocatalysts or as part of photocatalytic nanocomposites. This study aims to provide a comprehensive review on the use of CDs as sole photocatalysts in the areas of hydrogen production via water splitting, photodegradation of organic pollutants and photoreduction and metal removal from wastewaters. Furthermore, key limitations preventing a wider use of CDs as photocatalysts are pointed out. It is our hope that this review will serve as a basis on which researchers may find useful information to develop sustainable methodologies for the synthesis and use of photocatalytic CDs.
Collapse
|
7
|
Aggarwal R, Garg AK, Saini D, Sonkar SK, Sonker AK, Westman G. Cellulose Nanocrystals Derived from Microcrystalline Cellulose for Selective Removal of Janus Green Azo Dye. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg41296, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg41296, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg41296, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg41296, Sweden
| |
Collapse
|
8
|
Zhao J, Li C, Du X, Zhu Y, Li S, Liu X, Liang C, Yu Q, Huang L, Yang K. Recent Progress of Carbon Dots for Air Pollutants Detection and Photocatalytic Removal: Synthesis, Modifications, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200744. [PMID: 36251773 DOI: 10.1002/smll.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization has inevitably led to serious air pollution problems, thus it is urgent to develop detection and treatment technologies for qualitative and quantitative analysis and efficient removal of harmful pollutants. Notably, the employment of functional nanomaterials, in sensing and photocatalytic technologies, is promising to achieve efficient in situ detection and removal of gaseous pollutants. Among them, carbon dots (CDs) have shown significant potential due to their superior properties, such as controllable structures, easy surface modification, adjustable energy band, and excellent electron-transfer capacities. Moreover, their environmentally friendly preparation and efficient capture of solar energy provide a green option for sustainably addressing environmental problems. Here, recent advances in the rational design of CDs-based sensors and photocatalysts are highlighted. An overview of their applications in air pollutants detection and photocatalytic removal is presented, especially the diverse sensing and photocatalytic mechanisms of CDs are discussed. Finally, the challenges and perspectives are also provided, emphasizing the importance of synthetic mechanism investigation and rational design of structures.
Collapse
Affiliation(s)
- Jungang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xueyu Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Youcai Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Caixia Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qi Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Le Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Kuang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Li J, Wang F, Zhang J, Wang H, Zhao C, Shu L, Huang P, Xu Y, Yan Z, Dahlgren RA, Chen Z. Inward-to-outward assembly of amine-functionalized carbon dots and polydopamine to Shewanella oneidensis MR-1 for high-efficiency, microbial-photoreduction of Cr(VI). CHEMOSPHERE 2022; 307:135980. [PMID: 35963374 DOI: 10.1016/j.chemosphere.2022.135980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
A novel photosensitized living biohybrid was fabricated by inward-to-outward assembly of amine-functionalized carbon dots (NCDs) and polydopamine (PDA) to Shewanella oneidensis MR-1 and applied for high-efficiency, microbial-photoreduction of Cr(VI). Within a 72 h test period, biohybrids achieved a pronounced catalytic reduction capacity (100%) for 100 mg/L Cr(VI) under visible illumination, greatly surpassing the poor capacity (only 2.5%) displayed by the wild strain under dark conditions. Modular configurations of NCDs and PDA afforded biohybrids with a large electron flux by harvesting extracellular photoelectrons generated from illuminated NCDs and increasing reducing equivalents released from an enlarged intracellular NADH/NAD+ pool. Further, increased production of intracellular c-type cytochromes and extracellular flavins resulting from the modular configuration enhanced the biohybrid electron transport ability. The enhancement of electron transport was also attributed to more conductive conduits at NCDs-PDA junction interfaces. Moreover, because NCDs are highly reductive, the enhanced Cr(VI) reduction was also attributed to direct reduction by the NCDs and the direct Cr(VI) reduction by sterile NCDs-assembled biohybrid was up to 20% in the dark. Overall, a highly efficient strategy for removal/transformation of Cr(VI) by using NCD-assembled photosensitized biohybrids was proposed in this work, which greatly exceeded the performance of Cr(VI)-remediation strategies based on conventional microbial technologies.
Collapse
Affiliation(s)
- Jian Li
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Feng Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, People's Republic of China
| | - Chongyuan Zhao
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Lielin Shu
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Peng Huang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Yejing Xu
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental & Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Randy A Dahlgren
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Land, Air & Water Resources, University of California, Davis, CA, 95616, USA
| | - Zheng Chen
- School of Public Health & Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, People's Republic of China.
| |
Collapse
|
10
|
Ajiboye TO, Imade EE, Oyewo OA, Onwudiwe DC. Silver functionalized gC3N4: Photocatalytic potency for chromium(VI) reduction, and evaluation of the antioxidant and antimicrobial properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Queirós JM, Salazar H, Valverde A, Botelho G, Fernández de Luis R, Teixeira J, Martins PM, Lanceros-Mendez S. Reusable composite membranes for highly efficient chromium removal from real water matrixes. CHEMOSPHERE 2022; 307:135922. [PMID: 35940413 DOI: 10.1016/j.chemosphere.2022.135922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Natural or industrial hexavalent chromium water pollution continues to be a worldwide unresolved threat. Today, there is intense research on new active and cost-effective sorbents for Cr(VI), but most still exhibit a critical limitation: their powdered nature makes their recovery from water cost and energy consuming. In this work, Al(OH)3, MIL-88-B(Fe), and UiO-66-NH2 Cr(VI) sorbents were immobilized into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymeric substrate to develop an easily reactivable and reusable water filtering technology. The immobilization of the sorbents into the PVDF-HFP porous matrix modified the macro and meso-porous structure of the polymeric matrix, tuning in parallel its wettability. Although a partial blocking of the Cr(VI) adsorptive capacity was observed for of Al(OH)3 and MIL-88-B(Fe) when immobilized into composite membranes, PVDF-HFP/UiO-66-NH2 filter (i) exceeded the full capacity of the non-immobilized sorbent to trap Cr(VI), (ii) could be reactivated and reusable, and (iii) it was fully functional when applied in real water effluents.
Collapse
Affiliation(s)
- J M Queirós
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057, Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057, Braga, Portugal; Centre of Molecular and Environmental Biology, University of Minho, 4710-057, Braga, Portugal
| | - H Salazar
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057, Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057, Braga, Portugal; Centre/Department of Chemistry, University of Minho, 4710-057, Braga, Portugal
| | - A Valverde
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - G Botelho
- Centre/Department of Chemistry, University of Minho, 4710-057, Braga, Portugal
| | - R Fernández de Luis
- Centre/Department of Chemistry, University of Minho, 4710-057, Braga, Portugal.
| | - J Teixeira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057, Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057, Braga, Portugal; Centre/Department of Chemistry, University of Minho, 4710-057, Braga, Portugal
| | - P M Martins
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057, Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057, Braga, Portugal.
| | - S Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
12
|
Liu Y, Shan H, Pang Y, Zhan H, Zeng C. Iron modified chitosan/coconut shell activated carbon composite beads for Cr(VI) removal from aqueous solution. Int J Biol Macromol 2022; 224:156-169. [DOI: 10.1016/j.ijbiomac.2022.10.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
13
|
Gunture K, Garg AK, Aggarwal R, Kaushik J, Prajapati RK, Sonkar SK. Non-aqueous onion like nano-carbons from waste diesel-soot used as FRET-based sensor for sensing of nitro-phenols. ENVIRONMENTAL RESEARCH 2022; 212:113308. [PMID: 35460637 DOI: 10.1016/j.envres.2022.113308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Herein, a simple-functionalization method is described to prepare the oleylamine functionalized non-aqueous version of onion-like nanocarbons (ONC-OA), where ONC was isolated from the waste pollutant soot exhausted from the diesel engine. The surface group analysis of ONC-OA has been investigated via Nuclear Magnetic Resonance and X-ray Photoelectron Spectroscopy. ONC-OA shows blue fluorescence with a quantum yield of ∼6% in tetrahydrofuran (THF). The fluorescence-based sensing applications of ONC-OA has been investigated for selective sensing of toxic aromatic nitro-phenols compounds (para-nitro, dinitro, and trinitro phenols) from the tested many nitro organic compounds. Based on the limit of detection values, ONC-OA shows much better results for tri-nitro phenol compared to di and mono nitrophenol. To understand the quenching mechanism, a time-resolved photoluminescence analysis of the sensor with and without the addition of quenchers is performed. The effective lowering in fluorescence lifetime of the sensor after the addition of quenchers concludes that the quenching observed is majorly due to the Förster Resonance Energy Transfer (FRET) mechanism. The real-life application of ONC-OA was analyzed by external spiking of N-PhOHs in soil samples.
Collapse
Affiliation(s)
- Kumar Gunture
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India
| | - Rajneesh Kumar Prajapati
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur, 302017, India.
| |
Collapse
|
14
|
Zhuang Q, Chen H, Zhang C, Cheng S, Dong W, Xie A. Rapid chromium reduction by metal-free organic polymer photocatalysis via molecular engineering. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128938. [PMID: 35452994 DOI: 10.1016/j.jhazmat.2022.128938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The conversion of hexavalent chromium (Cr(VI)), a highly poisonous heavy metal found in natural environment, to less poisonous trivalent chromium (Cr(III)) has attracted a lot of interest. However, little interest has been paid to the development of metal-free catalysts. Here, we demonstrate for the first time a molecular engineering strategy to synthesize a range of donor-acceptor conjugated polymer photocatalysts, which can significantly increase the reduction efficiency of Cr(VI) by a factor of 5.2, corresponding to a significant change in the reduction reaction rate constant (from 0.0337 to 0.1740 min-1). In addition, the apparent quantum efficiency (AQE) of Cr(VI) removal was obtained, and the optimized photocatalyst (Py-SO1) could achieve the highest apparent quantum efficiency at wavelength of 420 nm in those samples. Despite the narrow light absorption of Py-SO1 polymer, its excellent exciton separation efficiency and efficient electron output enabled it to achieve excellent performance in photoreduction of Cr(VI), surpassing that of the reported metal-free photocatalysts. The results show that the present work provides a new perspective for designing suitable environmental remediation catalysts based on molecular engineering strategies.
Collapse
Affiliation(s)
- Qiu Zhuang
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Chaofan Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Siyao Cheng
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Aming Xie
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
15
|
Chen Z, Wei W, Chen H, Ni BJ. Recent advances in waste-derived functional materials for wastewater remediation. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:86-104. [PMID: 38075525 PMCID: PMC10702907 DOI: 10.1016/j.eehl.2022.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 01/17/2024]
Abstract
Water pollution is a major concern for public health and a sustainable future. It is urgent to purify wastewater with effective methods to ensure a clean water supply. Most wastewater remediation techniques rely heavily on functional materials, and cost-effective materials are thus highly favorable. Of great environmental and economic significance, developing waste-derived materials for wastewater remediation has undergone explosive growth recently. Herein, the applications of waste (e.g., biowastes, electronic wastes, and industrial wastes)-derived materials for wastewater purification are comprehensively reviewed. Sophisticated strategies for turning wastes into functional materials are firstly summarized, including pyrolysis and combustion, hydrothermal synthesis, sol-gel method, co-precipitation, and ball milling. Moreover, critical experimental parameters within different design strategies are discussed. Afterward, recent applications of waste-derived functional materials in adsorption, photocatalytic degradation, electrochemical treatment, and advanced oxidation processes (AOPs) are analyzed. We mainly focus on the development of efficient functional materials via regulating the internal and external characteristics of waste-derived materials, and the material's property-performance correlation is also emphasized. Finally, the key future perspectives in the field of waste-derived materials-driven water remediation are highlighted.
Collapse
Affiliation(s)
- Zhijie Chen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Wei Wei
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bing-Jie Ni
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
16
|
Pundi A, Chang CJ. Recent Advances in Synthesis, Modification, Characterization, and Applications of Carbon Dots. Polymers (Basel) 2022; 14:2153. [PMID: 35683827 PMCID: PMC9183192 DOI: 10.3390/polym14112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Although there is significant progress in the research of carbon dots (CDs), some challenges such as difficulty in large-scale synthesis, complicated purification, low quantum yield, ambiguity in structure-property correlation, electronic structures, and photophysics are still major obstacles that hinder the commercial use of CDs. Recent advances in synthesis, modification, characterization, and applications of CDs are summarized in this review. We illustrate some examples to correlate process parameters, structures, compositions, properties, and performances of CDs-based materials. The advances in the synthesis approach, purification methods, and modification/doping methods for the synthesis of CDs are also presented. Moreover, some examples of the kilogram-scale fabrication of CDs are given. The properties and performance of CDs can be tuned by some synthesis parameters, such as the incubation time and precursor ratio, the laser pulse width, and the average molar mass of the polymeric precursor. Surface passivation also has a significant influence on the particle sizes of CDs. Moreover, some factors affect the properties and performance of CDs, such as the polarity-sensitive fluorescence effect and concentration-dependent multicolor luminescence, together with the size and surface states of CDs. The synchrotron near-edge X-ray absorption fine structure (NEXAFS) test has been proved to be a useful tool to explore the correlation among structural features, photophysics, and emission performance of CDs. Recent advances of CDs in bioimaging, sensing, therapy, energy, fertilizer, separation, security authentication, food packing, flame retardant, and co-catalyst for environmental remediation applications were reviewed in this article. Furthermore, the roles of CDs, doped CDs, and their composites in these applications were also demonstrated.
Collapse
Affiliation(s)
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan;
| |
Collapse
|
17
|
Moyo M, Modise SJ, Pakade VE. Application of polymer-coated Macadamia integrifolia nutshell biomass impregnated with palladium for chromium(VI) remediation. Sci Rep 2021; 11:24184. [PMID: 34921191 PMCID: PMC8683406 DOI: 10.1038/s41598-021-03473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Freely suspended and porous basket restrained granules of palladium nanoparticles supported on polymer-grafted Macadamia nutshell biomass (Pd@Polym-MNS) composite were used for the treatment chromium(VI)-containing water. In the presence of formic acid, the Pd@Polym-MNS demonstrated its activity in the adsorption-reduction-based conversion of noxious chromium(VI) to less toxic chromium(III) with a low activation energy of 13.4 kJ mol-1, ΔH0 (+ 10.8 kJ mol-1), ΔS0 (-270.0 J mol-1 K-1), and ΔG0 (+ 91.3 to + 98.0 kJ mol-1) indicated the exothermic, endergonic and non-spontaneous nature of the catalytic redox reaction. In addition to facilitating easy recovery, rinsing, and reuse, restraining the Pd@Polym-MNS in the basket reactor helped maintain the integrity of the catalysts by preventing violent collisions of suspended granules with the mixing apparatus and the walls of the reaction vessel. Whereas the pseudo-first-order rate constant was recorded as 0.157 min-1 upon initial use, values of the mean and relative standard deviation for the second, third and fourth consecutive uses were found to be 0.219 min-1 and 1.3%, respectively. According to a response surface methodological approach to batch experimentation, the initial concentration of chromium(VI) and catalyst dosage had the greatest impact on the redox reaction rate, accounting for 85.7% and 11.6% of the variability in the value of the pseudo-first-order rate constant, respectively. Mutually beneficial effects of the combinations of high formic acid and low chromium(VI) concentration, high temperature and catalyst dosage as well as high formic acid and catalyst dosage were recorded.
Collapse
Affiliation(s)
- Malvin Moyo
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1911, South Africa
- Department of Applied Chemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | | | | |
Collapse
|