1
|
Thamarai P, Shaji A, Deivayanai VC, Kamalesh R, Saravanan A, Yaashikaa PR, Vickram AS. Cutting-edge nanotechnology approaches for efficient mercury remediation: Mechanisms, innovations and future prospects in polluted environments. CHEMOSPHERE 2025; 379:144446. [PMID: 40311250 DOI: 10.1016/j.chemosphere.2025.144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Mercury contamination poses a significant threat to the environment and human health due to its persistence, bioaccumulation, and toxicity. Conventional remediation methods such as chemical precipitation, coagulation, and membrane filtration often fall short due to limitations like incomplete removal, secondary pollution, and low selectivity. In response, advanced nanomaterials, defined as engineered nanostructures with high surface area, tunable surface chemistry, and exceptional mercury-binding capabilities, have emerged as powerful alternatives. This review critically evaluates five major classes of nanomaterials, such as carbon-based nanomaterials, metal and metal oxide nanoparticles, functionalized polymer nanocomposites, biosynthesized nanoparticles, and hybrid nanomaterials, with a focus on their mercury removal efficiency, regeneration capacity, environmental safety, and real-world applicability. While these materials have been previously reported, this work offers a unique comparative analysis that synthesizes fragmented data across the literature to highlight performance trade-offs and implementation feasibility. Furthermore, nanotechnology-assisted techniques including adsorption, photocatalysis, membrane-based separation, and hybrid treatment systems are systematically reviewed, emphasizing removal efficiencies, operational parameters, and scalability. Among these, hybrid nanomaterials and multifunctional systems demonstrate the highest potential, achieving mercury removal rates exceeding 95 % and offering adaptability to complex contaminated matrices. Rather than introducing new experimental data, this review identifies key research gaps, unresolved challenges such as nanoparticle toxicity and recovery, and the lack of field-scale validation. It concludes with a roadmap to guide future research toward the development of safe, cost-effective, and environmentally sustainable nanotechnology-driven mercury remediation strategies. This work aims to support informed decision-making among researchers, engineers, and environmental policymakers working to mitigate mercury pollution effectively.
Collapse
Affiliation(s)
- P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
2
|
Algieri V, Tursi A, Costanzo P, Maiuolo L, De Nino A, Nucera A, Castriota M, De Luca O, Papagno M, Caruso T, Ciurciù S, Corrente GA, Beneduci A. Thiol-functionalized cellulose for mercury polluted water remediation: Synthesis and study of the adsorption properties. CHEMOSPHERE 2024; 355:141891. [PMID: 38575086 DOI: 10.1016/j.chemosphere.2024.141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Mercury pollution poses a global health threat due to its high toxicity, especially in seafood where it accumulates through various pathways. Developing effective and affordable technologies for mercury removal from water is crucial. Adsorption stands out as a promising method, but creating low-cost materials with high selectivity and capacity for mercury adsorption is challenging. Here we show a sustainable method to synthesize low-cost sulfhydrylated cellulose with ethylene sulfide functionalities bonded glucose units. Thiol-functionalized cellulose exhibits exceptional adsorption capacity (1325 mg g-1) and selectivity for Hg(II) over other heavy metals (Co, Cu, Zn, Pb) and common cations (Ca++, Mg++) found in natural waters. It performs efficiently across a wide pH range and different aqueous matrices, including wastewater, and can be regenerated and reused multiple times without significant loss of performance. This approach offers a promising solution for addressing mercury contamination in water sources.
Collapse
Affiliation(s)
- Vincenzo Algieri
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy.
| | - Antonio Tursi
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy
| | - Paola Costanzo
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy
| | - Loredana Maiuolo
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy
| | - Antonio De Nino
- Laboratorio di Sintesi Organica e Preparazioni Chimiche (LabOrSy), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 12C, 6th floor, 87036, Rende, CS, Italy
| | - Antonello Nucera
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; CNR-Nanotec C/o Department of Physics, University of Calabria, Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy
| | - Marco Castriota
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; CNR-Nanotec C/o Department of Physics, University of Calabria, Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy
| | - Oreste De Luca
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; CNR-Nanotec C/o Department of Physics, University of Calabria, Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; Laboratorio di Spettroscopia Avanzata dei Materiali, STAR IR, Via Tito Flavio, Università della Calabria, Italy
| | - Marco Papagno
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; Laboratorio di Spettroscopia Avanzata dei Materiali, STAR IR, Via Tito Flavio, Università della Calabria, Italy
| | - Tommaso Caruso
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036, Rende, Cosenza, Italy; Laboratorio di Spettroscopia Avanzata dei Materiali, STAR IR, Via Tito Flavio, Università della Calabria, Italy
| | - Simona Ciurciù
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy; Laboratory of Chemistry for Environment, Polo Tecnologico SILA, University of Calabria, Via Tito Flavio, 87036, Rende, Cosenza, Italy
| | - Giuseppina Anna Corrente
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy; Laboratory of Chemistry for Environment, Polo Tecnologico SILA, University of Calabria, Via Tito Flavio, 87036, Rende, Cosenza, Italy
| | - Amerigo Beneduci
- Laboratory of Physical Chemistry Applied to Smart Materials for Advanced Technologies and Industrial Processes (PC-SMARTech), Department of Chemistry and Chemical Technologies, University of Calabria, via P. Bucci, Cubo 15D, Ground floor, 87036, Rende, CS, Italy; Laboratory of Chemistry for Environment, Polo Tecnologico SILA, University of Calabria, Via Tito Flavio, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
3
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
4
|
Chen Y, Jiang H, Liu X, Wang X. Engineered Electrochemiluminescence Biosensors for Monitoring Heavy Metal Ions: Current Status and Prospects. BIOSENSORS 2023; 14:9. [PMID: 38248386 PMCID: PMC10813191 DOI: 10.3390/bios14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Metal ion contamination has serious impacts on environmental and biological health, so it is crucial to effectively monitor the levels of these metal ions. With the continuous progression of optoelectronic nanotechnology and biometrics, the emerging electrochemiluminescence (ECL) biosensing technology has not only proven its simplicity, but also showcased its utility and remarkable sensitivity in engineered monitoring of residual heavy metal contaminants. This comprehensive review begins by introducing the composition, advantages, and detection principles of ECL biosensors, and delving into the engineered aspects. Furthermore, it explores two signal amplification methods: biometric element-based strategies (e.g., HCR, RCA, EDC, and CRISPR/Cas) and nanomaterial (NM)-based amplification, including quantum dots, metal nanoclusters, carbon-based nanomaterials, and porous nanomaterials. Ultimately, this review envisions future research trends and engineered technological enhancements of ECL biosensors to meet the surging demand for metal ion monitoring.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (H.J.); (X.L.)
| |
Collapse
|
5
|
Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Adv Colloid Interface Sci 2022; 309:102780. [DOI: 10.1016/j.cis.2022.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023]
|
7
|
Yang L, Zhang X, Li M, Qu L, Liu Z. Acetylcholinesterase-Cu 3(PO 4) 2 hybrid nanoflowers for electrochemical detection of dichlorvos using square-wave voltammetry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3911-3920. [PMID: 36169013 DOI: 10.1039/d2ay01014c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Immobilization of enzymes is one of the key steps in the development of high-performance enzymatic electrochemical biosensors, and various nanostructured materials have been designed and developed to achieve this goal. Herein, hybrid nanoflowers (HNFs) were synthesized using acetylcholinesterase (AChE) as an organic component and copper phosphate (Cu3(PO4)2) as an inorganic component. These AChE-Cu3(PO4)2 HNFs exhibit a three-dimensional hierarchical flower-like structure, which not only has a large specific surface area but also promotes the affinity between AChE and its substrate with better catalytic activity. Not only that, the surface modification of the glassy carbon electrode (GCE) by the joint use of gold nanoparticles (AuNPs) and graphene oxide (GO) extended the electroactive area. Using square-wave voltammetry (SWV), the as-prepared biosensor (i.e., AChE-Cu3(PO4)2 HNF/AuNP/GO/GCE) demonstrated superior sensing performance in the detection of dichlorvos. The detection limit is as low as 0.07 pM, and the linear detection range can range from 0.5 pM to 10 μM. In addition, the biosensor was feasible in real agricultural samples with satisfactory recoveries (98.65% to 103.43%). The reported biosensor provides an alternative tool for the direct measurements of AChE activity and its inhibition. Besides organophosphorus pesticides represented by dichlorvos, this biosensor has the potential to detect other AChE inhibitors, such as carbamate pesticides, drugs for Alzheimer's disease, etc., thus having broader applications in food safety and drug screening.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.
| | - Xiaolong Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.
| | - Mingming Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.
| | - Linjiao Qu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.
| | - Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
8
|
Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Malar CG, Seenuvasan M, Murugesan M, Ron Carter SB, Kumar KS. Modelling of urea hydrolysis kinetics using genetic algorithm coupled artificial neural networks in urease immobilized magnetite nanoparticles. CHEMOSPHERE 2022; 303:134929. [PMID: 35577134 DOI: 10.1016/j.chemosphere.2022.134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The presence of urea in runoff from fertilized soil could be contributing to the growth of dangerous blooms. Enzymatic urea hydrolysis is a well-known outstanding process that, when integrated with nanotechnology, would be much more efficient. This research provides a novel perspective on magnetic nanobiocatalysts that reduce diffusion barriers in effective urea hydrolysis. Surprisingly, the model developed with the use of a Genetic Algorithm (GA) and an Artificial Neural Network (ANN) demonstrated that the system's diffusion restrictions were reduced. In order to forecast accurate outputs using artificial intelligence (AI), a neural network with one hidden layer and 20 neurons was built utilizing multilayer feed-forward network and showed highest output (diffusion co-efficient) with least mean square error (MSE). The diffusion coefficients of free urease, urease immobilized onto porous MNs (U-aMNs), and nanobiocatalyst, i.e. urease immobilized onto surface modified MNs (U-MNβ), were 1.9 × 10-17, 12.62 × 10-16, and 15.48 × 10-16 cm2/min, respectively. These results revealed that the addition of Chitosan to the surface of MNs had a considerable impact on enzyme dispersion. The decrease in Damkohler number (Da) from 2.37 ± 0.26 for U-aMNs to 2.19 ± 0.11 for U-MNβ suggested a beneficial effect in overcoming diffusion constraints. Pseudo-first order and pseudo-second order models were used to analyze urea uptake kinetics, with the former model offering the best fit to the system, with R2 values that were much closer to unity.
Collapse
Affiliation(s)
- Carlin Geor Malar
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Tamilnadu, 602105, India.
| | - Muthulingam Seenuvasan
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India.
| | - Mohanraj Murugesan
- Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, 641032, India
| | - S B Ron Carter
- Department of Electrical and Electronics Engineering, Rajalakshmi Engineering College, Thandalam, Tamilnadu, 602105, India
| | - Kannaiyan Sathish Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamilnadu, 603110, India
| |
Collapse
|
10
|
Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens). SUSTAINABILITY 2022. [DOI: 10.3390/su14074335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The remediation of potentially toxic element-polluted soils can be accomplished through the use of microbial and plant-assisted bioremediation. A total of 32 bacteria were isolated from soil samples contaminated with potentially toxic elements. The isolated bacterial strain DG-20 showed high tolerance to cadmium (up to 18 mM) and also showed bioaccumulative Cd removal properties, as demonstrated by atomic absorption spectroscopy studies. By sequencing the 16S rRNA gene, this strain was identified as Curtobacterium oceanosedimentum. Under stress and normal conditions, isolate DG-20 also produced a wide range of plant growth promoting traits, including ammonia production (51–73 µg/mL) and IAA production (116–183 µg/mL), alongside siderophore production and phosphate solubilization. Additionally, pot experiments were conducted to determine whether the strain could promote Chili growth when Cd salts are present. Over the control, bacterial colonization increased root and shoot lengths significantly up to 58% and 60%, respectively. Following inoculation with the Cd-tolerant strain, the plants also increased in both fresh and dry weight. In both the control and inoculated plants, Cd was accumulated more in roots than in shoots, indicating that Chili was phytostabilizing Cd levels. Besides improving the plant attributes, Cd-tolerant bacteria were also found to increase the amount of total chlorophyll, proline, total phenol, and ascorbic acid in the soil when added to the soil. These results suggest that the inoculant provides protection to plants from negative effects. The results of the present study predict that the combined properties of the tested strain in terms of Cd tolerance and plant growth promotion can be exploited for the purpose of the bioremediation of Cd, and for the improvement of Chili cultivation in soils contaminated with Cd.
Collapse
|