1
|
Yang M, Yao N, Li X, Yu J, Zhang S, Ding B. Dual-Asymmetric Janus Membranes Based on Two-Dimensional Nanowebs with Superspreading Surface for High-Performance Desalination. ACS NANO 2024. [PMID: 39558489 DOI: 10.1021/acsnano.4c11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Distillation membranes with hydrophobic surfaces and defined pores are considered a promising solution for seawater desalination. Most existing distillation membranes exhibit three-dimensional (3D) stacking bulk structures, where the zigzag water-repellent channels often lead to limited permeability and high energy costs. Here, we created two-dimensional nanowebs directly from the polymer/sol solution to construct dual-asymmetric Janus membranes. By tailoring the phase separation rate, the polymer phase evolved into continuous hydrophilic webs in situ weld on the microporous hydrophobic layer. The webs possess true-nanoscale architectures (internal fiber diameter of ∼20 nm, pore size of ∼140 nm) with enhanced roughness, serving as a superspreading surface to reach a water contact angle of 0° in 1.7 s. Benefiting from the architecture and wettability dual asymmetries, the obtained Janus membrane shows high-efficiency desalination performance (salt rejection >99%, flux of 11 kg m-2 h-1, and energy efficiency of 79%) with a thickness of 6.7 μm. Such a fascinating nanofibrous web-based Janus membrane may inspire the design of advanced liquid separation materials.
Collapse
Affiliation(s)
- Ming Yang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ni Yao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoxi Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Caliskan E, Shishatskiy S, Filiz V. Comparative Study of Polymer of Intrinsic Microporosity-Derivative Polymers in Pervaporation and Water Vapor Permeance Applications. Polymers (Basel) 2024; 16:2932. [PMID: 39458760 PMCID: PMC11511032 DOI: 10.3390/polym16202932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
This study assesses the gas and water vapor permeance of PIM-derivative thin-film composite (TFC) membranes using pervaporation and "pressure increase" methods, and provides a comparative view of "time lag" measurements of thick films obtained from our previous work. In this study, TFC membranes were prepared using PIM-1 and homopolymers that were modified with different side groups to explore their effects on gas and water vapor transport. Rigid and bulky aliphatic groups were used to increase the polymer's free volume and were evaluated for their impact on both gas and water transport. Aromatic side groups were specifically employed to assess water affinity. The permeance of CO2, H2, CH4 and water vapor through these membranes was analyzed using the 'pressure increase' method to determine the modifications' influence on transport efficiency and interaction with water molecules. Over a 20 h period, the aging and the permeance of the TFC membranes were analyzed using this method. In parallel, pervaporation experiments were conducted on samples taken independently from the same membrane roll to assess water flux, with particular attention paid to the liquid form on the feed side. The significantly higher water vapor transport rates observed in pervaporation experiments compared to those using the "pressure increase" method underline the efficiency of pervaporation. This efficiency suggests that membranes designed for pervaporation can serve as effective alternatives to conventional porous membranes used in distillation applications. Additionally, incorporating "time lag" results from a pioneering study into the comparison revealed that the trends observed in "time lag" and pervaporation results exhibited similar trends, whereas "pressure increase" data showed a different development. This discrepancy is attributed to the state of the polymer, which varies significantly depending on the operating conditions.
Collapse
Affiliation(s)
| | | | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.)
| |
Collapse
|
3
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
4
|
Yang J, Peng Q, Xu Y, Lv B, Liu Y, Fan X. Bifunctional Solar Evaporator with Co/N-Doped Graphene Oxide for Synergistic Steam Generation and Organic Pollutant Degradation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45441-45454. [PMID: 37702705 DOI: 10.1021/acsami.3c08934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Solar-driven interfacial steam generation (SISG) is a promising technology for alleviating freshwater shortage. However, when the SISG technology is applied to wastewater treatment, the contaminant would be enriched in residual bulk water. Herein, a dual-functional evaporator was constructed via tactfully decorating Co/N-doped graphene oxide (GO) on melamine foam (MF), which can simultaneously achieve efficient vapor production and source water purification. N-doped carbon nanotubes (NCNTs) endowed evaporators with powerful light absorption and water transport performance, guaranteeing an evaporation rate of 2.02 kg m-2 h-1 under 1 sun irradiation. Meanwhile, the catalytic activity of the carbon layer was adjusted by the N dopant and embedded Co particles, providing abundant active sites to activate peroxymonosulfate (PMS). When treating the solution containing sulfamethoxazole (SMX), no SMX residues were detected in the remaining bulk water (up to 100% SMX degradation efficiency within 60 min), demonstrating that reactive oxygen species (ROS) were generated to attack SMX in the source water. The bifunctional evaporator successfully combined SISG and advanced oxidation processes (AOPs), providing an ingenious strategy for solving the problem of wastewater enrichment during SISG.
Collapse
Affiliation(s)
- Jia Yang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Qi Peng
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Yuanlu Xu
- College of Transport Engineering, Dalian Maritime University, Dalian 116026, China
- Centre for Ports and Maritime Safety, Dalian Maritime University, Dalian 116026, China
| | - Bowen Lv
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China
| |
Collapse
|
5
|
Upadhyay A, Singh R, Talwar P, Verma N, Ahire PD, Khatri H, Masakapalli SK, Pareek N, Kumar V, Kovalev AA, Zhuravleva EA, Litti YV, Vivekanand V. Insights into sustainable resource and energy recovery from leachate towards emission mitigation for environmental management: A critical approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118219. [PMID: 37229852 DOI: 10.1016/j.jenvman.2023.118219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The exponential generation of municipal solid waste (MSW) and landfill disposal without any treatment has increased the continuous generation of landfill leachate. Improper MSW and leachate management are contributing to environmental degradation and water and soil pollution, which must be treated. Numerous works have been conducted on leachate treatments for energy and resource recovery. This review presents a comprehensive study of leachate management in which different treatment methods are discussed to analyze the suitability of processes that can be employed to treat leachate efficiently. Further, the characteristics of leachate are examined as properties of leachate may be varied depending upon the region. Still, several challenges related to leachate management and its treatments are discussed in this study. An integrated system could be a better option for treating leachate because it contains large amounts of organic and inorganic compounds. Proper leachate management would help to recover energy and value-added products (metals).
Collapse
Affiliation(s)
- Apoorva Upadhyay
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Prakhar Talwar
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Nikita Verma
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Pratiksha Dadaji Ahire
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Hemant Khatri
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Shyam Kumar Masakapalli
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, 175075, India.
| | - Nidhi Pareek
- Department of Sports Bio-Sciences, School of Sports Sciences, Central University of Rajasthan, Ajmer, 305817, India.
| | - Vinod Kumar
- Bioenergy and Resource Management Centre, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Andrey A Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM", 1st Institutskiy Proezd, 5, 109428, Moscow, Russia.
| | - Elena A Zhuravleva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospekt 33, 2, 119071, Moscow, Russia.
| | - Yuriy V Litti
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospekt 33, 2, 119071, Moscow, Russia.
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
6
|
Khan A, Yadav S, Ibrar I, Al Juboori RA, Razzak SA, Deka P, Subbiah S, Shah S. Fouling and Performance Investigation of Membrane Distillation at Elevated Recoveries for Seawater Desalination and Wastewater Reclamation. MEMBRANES 2022; 12:membranes12100951. [PMID: 36295710 PMCID: PMC9606868 DOI: 10.3390/membranes12100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 05/31/2023]
Abstract
This study reports on the impact of elevated recovery (i.e., 80%, 85%, and 90%) on the fouling and performance of air gap membrane distillation (AGMD) with real seawater and landfill leachate wastewater samples using polytetrafluoroethylene (PTFE) polymer membranes. Increasing the feed temperature from 55 °C to 65 °C improved the water flux of seawater and wastewater and shortened the operating time by 42.8% for all recoveries. The average water flux in the 80%, 85%, and 90% recovery experiments at the 65 °C feed temperature was 32%, 37.32%, and 36.7% higher than the case of 55 °C for the same recoveries. The water flux decline was more severe at a higher temperature and recovery. The highest flux decline was observed with a 90% recovery at 65 °C feed temperature, followed by an 85% recovery at 65 °C. Close examination of the foulants layer revealed that seawater formed a cake fouling layer made predominantly of metal oxides. In contrast, the landfill leachate fouling was a combination of pore blocking and cake formation, consisting mainly of carbonous and nitrogenous compounds. Physical cleaning with deionized (DI) water at 55 °C and 65 °C and chemical cleaning with hydrogen peroxide (H2O2) were investigated for their efficiency in removing membrane foulants. Analytical results revealed that seawater fouling caused membrane pore blockage while wastewater fouling formed a porous layer on the membrane surface. The results showed that membrane cleaning with hydrogen peroxide restored >97% of the water flux. Interestingly, the fouling factor in seawater tests was 10%, while it was 16% for the wastewater tests.
Collapse
Affiliation(s)
- Abdulaziz Khan
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
- Mechanical Department at Taif Technical College, Technical and Vocational Training Corporation (TVTC), Riyadh 11564, Saudi Arabia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Raed A. Al Juboori
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Sara Ali Razzak
- Medical Physics Department, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Priyamjeet Deka
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shreyansh Shah
- Lexcru Water Tech Pvt. Ltd., Ahmeadabad 382418, Gujarat, India
| |
Collapse
|