1
|
Viana JLM, Dos Santos SRV, Santos LHMLM, Jaén-Gil A, Rodríguez-Mozaz S, Barceló D, Franco TCRDS. Pesticide contamination and associated ecological risks in estuarine waters of Brazil's Legal Amazon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:617-633. [PMID: 39695039 DOI: 10.1007/s11356-024-35778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Pesticide contamination remains a significant environmental concern globally, with important implications for aquatic ecosystems. Despite being one of the world's largest pesticide consumers, monitoring and assessment of pesticide pollution are limited in Brazil, especially in sensitive regions like the Amazon. In this study, the occurrence and environmental risks of 8 pesticides of different classes, namely alachlor, atrazine, chlorfenvinphos, isoproturon, irgarol, simazine, diuron, and its transformation product DCPMU (1-(3,4-dichlorophenyl)-3-methyl urea) were analysed in surface water of the São Marcos Estuarine Complex (SMEC) in two consecutive years. The quantification of the target compounds was performed using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Suspected and untargeted screening analyses with ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was also conducted to identify transformation products (TPs) and additional pesticides in water samples. All target pesticides, except for alachlor, were found in at least one sampling campaign. The antifouling biocides irgarol and diuron were ubiquitous in 2018 and 2019, with detection frequencies varying between 81 and 100% and maximum concentrations of 13.6 ng L-1 and 17.1 ng L-1, respectively. In 2019, the detection frequencies of the target pesticides were considerably higher than in 2018, with atrazine, isoproturon, and DCPMU being found in 100% of the samples. In 2019, chlorfenvinphos and isoproturon were the pesticides with the highest levels, reaching 48.6 ng L-1 and 44.6 ng L-1, respectively. The UHPLC-HRMS analysis showed the presence of the pesticides DEET (N,N-diethyl-meta-toluamide), octhilinone (2-Octyl-4-isothiazolin-3-one), and cyprodinil (4-cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine) in water samples. Additionally, the TPs 2-hydroxy-atrazine, didemethylisoproturon (1-(4-isopropylphenyl)urea) and M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) were found. The environmental risk assessment showed that irgarol was the primary contributor to the global risk quotient in the SMEC region. Similarly, chlorfenvinphos also showed a high risk to the local aquatic biota, especially in 2019. This research not only highlights the urgent need for improved pesticide monitoring in Brazil but also establishes a baseline for future studies and environmental management efforts in SMEC. We emphasize the importance of prioritising pollutants and implementing effective mitigation strategies to protect the fragile aquatic ecosystems of the Brazilian Amazon.
Collapse
Affiliation(s)
- José Lucas Martins Viana
- Environmental Studies Centre, São Paulo State University (UNESP), Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
- Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil.
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain.
| | - Sara Raiane Viana Dos Santos
- Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Girona, Spain
| | - Adrián Jaén-Gil
- Norwegian Research Centre (NORCE), Climate & Environment Division, Mekjarvik 12, 4072, Randaberg, Norway
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Girona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | | |
Collapse
|
2
|
Huang Y, Huang Q, Zhou K, Luo X, Long W, Yin Z, Huang Z, Hong Y. Effects of glyphosate on neurotoxicity, oxidative stress and immune suppression in red swamp crayfish, Procambarus Clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107050. [PMID: 39178750 DOI: 10.1016/j.aquatox.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Glyphosate, a prevalent herbicide, has raised concerns due to its potential ecological impact, especially on aquatic ecosystems. While it is crucial for managing agricultural productivity, its inadvertent effects on non-target aquatic species like the red swamp crayfish, Procambarus clarkii, are not fully understood. In the present study, the neurotoxicity, oxidative stress, and immune suppression of glyphosate on P. clarkii were investigated. Sublethal glyphosate exposure (5, 10 and 20 mg/L) for 96 h was found to significantly decrease AChE activity in both brain and hepatopancreas, correlating with reduced foraging efficiency and increased turnover time. Oxidative stress was evident through increased lipid peroxidation (LPO) and malondialdehyde (MDA) levels and altered antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In addition, the total antioxidative capacity (T-AOC) was inhibited at 10 and 20 mg/L of glyphosate exposure. Immune assays revealed a decrease in total hemocyte counts (THC) and suppression of key immune enzyme activities and transcriptional expressions at higher concentrations, suggesting compromised immune defenses. The findings demonstrate that glyphosate can induce considerable neurotoxic and immunotoxic effects in P. clarkii, disrupting essential physiological functions and behavior.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Kelei Zhou
- Agricultural and Rural Bureau of Liangshan Yi Autonomous Prefecture of Sichuan Province, Liangshan, China
| | - Xiongwei Luo
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Wei Long
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Zeyu Yin
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| |
Collapse
|
3
|
Zebral YD, Righi BDP, Anni ISA, Escarrone ALV, Guillante T, Vieira CED, Costa PG, Bianchini A. Organic contamination and multi-biomarker assessment in watersheds of the southern Brazil: an integrated approach using fish from the Astyanax genus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30543-30554. [PMID: 38607488 DOI: 10.1007/s11356-024-33181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Bruna Duarte Pereira Righi
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Iuri Salim Abou Anni
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Venquiaruti Escarrone
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Tainá Guillante
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Eduardo Delfino Vieira
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
4
|
Degli Esposti D, Lalouette A, Gaget K, Lepeule L, Chaabi Z, Leprêtre M, Espeyte A, Delorme N, Quéau H, Garnero L, Calevro F, Chaumot A, Geffard O. Identification and organ-specific patterns of expression of two metallothioneins in the sentinel species Gammarus fossarum. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110907. [PMID: 37827361 DOI: 10.1016/j.cbpb.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Metal pollution is a major concern for aquatic environments. Widespread contamination by various trace metal ions has been described in freshwater streams as well as their subsequent bioaccumulation, potentially leading to toxicity and trophic transfer. Metallothioneins constitute an evolutionary conserved family of low molecular weight, cysteine-rich, metal-chelating proteins, whose known physiological functions are the maintenance of the homeostasis of essential metals, the detoxification of non-essential metals, and the protection against oxidative stress and free radicals. In this study, we identified two metallothionein-coding transcripts, mt1 and mt2, in the transcriptome of the amphipod Gammarus fossarum, a sentinel species widely used to assess the quality of watersheds. For the first time, we investigated the organ-specific patterns of expression of these two mt transcripts at the individual level in the gills and the caeca of this small crustacean. In silico analysis and experimental exposures to environmentally relevant concentrations of cadmium, zinc and silver showed that G. fossarum mt1 induction is stronger after Cd exposure compared to the other tested metals. G. fossarum mt1 was more significantly induced in the caeca than in the gills of exposed organisms for any metal exposure, while G. fossarum mt2 was, at least at the individual level, more inducible in the gills than in the caeca of G. fossarum exposed to Cd and Zn. Our results provide new genetic resources that will help to improve the understanding of metal homeostasis in this sentinel species.
Collapse
Affiliation(s)
- Davide Degli Esposti
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France.
| | - Auréline Lalouette
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Karen Gaget
- INRAE, INSA Lyon, BF2I, UMR 203, Université de Lyon, 69621 Villeurbanne, France
| | - Louveline Lepeule
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Zineb Chaabi
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Maxime Leprêtre
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Hervé Quéau
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Federica Calevro
- INRAE, INSA Lyon, BF2I, UMR 203, Université de Lyon, 69621 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team. Centre de Lyon-Grenoble Auvergne Rhône-Alpes, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
| |
Collapse
|
5
|
das Mercês Pereira Ferreira A, de Matos JM, Silva LK, Viana JLM, Dos Santos Diniz Freitas M, de Amarante Júnior OP, Franco TCRDS, Brito NM. Assessing the spatiotemporal occurrence and ecological risk of antifouling biocides in a Brazilian estuary. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3572-3581. [PMID: 38085476 DOI: 10.1007/s11356-023-31286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.
Collapse
Affiliation(s)
- Adriana das Mercês Pereira Ferreira
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| | - Jhuliana Monteiro de Matos
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil.
| | - Lanna Karinny Silva
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| | - José Lucas Martins Viana
- Universidade Estadual de Campinas, Instituto de Química, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marta Dos Santos Diniz Freitas
- Postgraduate Program in Technological and Environmental Chemistry, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ozelito Possidônio de Amarante Júnior
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | | | - Natilene Mesquita Brito
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| |
Collapse
|
6
|
da Silva Montes C, Fernandes da Paixão L, Nunes B, Pimentel Nunes ZM, Pantoja Ferreira MA, Martins da Rocha R. Investigating spatial-temporal contamination for two environments of the Amazon estuary: A multivariate approach. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105883. [PMID: 36709654 DOI: 10.1016/j.marenvres.2023.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
An assessment of environmental quality in Amazonian estuaries utilizing histological and immunohistochemical biomarkers concomitantly with analyses of trace metals in the tissues of Sciades herzbergii, also considering physical chemical analyzes of the water. 352 animals were captured from two sites and during two periods (dry and rainy). Site 1: São Marcos Bay - heavy anthropic influence and Site 2: Caeté estuary-preserved estuary. In the laboratory, the fish were weighed (g) and measured (cm). Fragments of gills and liver were analyzed using histology and immunohistochemistry (Caspase 3). The specimens from Site 1 presented a low-value condition factor, with the highest concentrations of Al, Cd, and Hg appearing in the muscle, and most severe damages to gills and liver. In contrast, individuals from Site 2 presented a high-value condition factor and showed low metal concentrations in the muscle with only slight tissue lesions. Furthermore, our results demonstrated that seasonal changes affect metal modulation and pathologies in fish at Site 1. The sentinel species chosen in this study is considered a strong bioindicator of pollution and the combination of different biomarkers was efficient in providing a clear view of the signs of exposure to pollutants, and the risks posed to fish health by the presence of metals in the environment, especially in Site 1.
Collapse
Affiliation(s)
- Caroline da Silva Montes
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil; Department of Zoology, Faculty of Natural Science and Oceanography, University of Concepción, Concepción, Chile.
| | - Leonardo Fernandes da Paixão
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Zélia Maria Pimentel Nunes
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Alameda Leandro Ribeiro S/n Aldeia, Bragança, PA, 68600-000, Brazil
| | - Maria Auxiliadora Pantoja Ferreira
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Rossineide Martins da Rocha
- Laboratory of Cellular Ultrastructure and Immunohistochemistry, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| |
Collapse
|