1
|
Marimuthu G, Priyadharsini CI, Prabhu S, Viji A, Vignesh S, AlSalhi MS, Lee J, Palanisamy G. Silver-decorated SrTiO 3 nanoparticles for high-performance supercapacitors and effective remediation of hazardous pollutants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:96. [PMID: 38376605 DOI: 10.1007/s10653-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.
Collapse
Affiliation(s)
- G Marimuthu
- Department of Physics, Mahendra College of Engineering, Salem, Tamil Nadu, 636106, India
| | - C Indira Priyadharsini
- Department of Physics, Muthayammal College of Arts & Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India.
| | - S Prabhu
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - A Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam, Tamil Nadu, 621215, India
| | - S Vignesh
- Department of Applied Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, 114511, Riyadh, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Khan IA, Alzahrani AS, Ali S, Mansha M, Tahir MN, Khan M, Qayyum HA, Khan SA. Development of Membranes and Separators to Inhibit Cross-Shuttling of Sulfur in Polysulfide-Based Redox Flow Batteries: A Review. CHEM REC 2024; 24:e202300171. [PMID: 37606899 DOI: 10.1002/tcr.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012-2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.
Collapse
Affiliation(s)
- Ibad Ali Khan
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Nawaz Tahir
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Hafiz Adil Qayyum
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Physics, College of General Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabi
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Spectroelectrochemistry of next-generation redox flow battery electrolytes: A survey of active species from four representative classes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|