1
|
Li C, Shi L, Liu T, Dong K, Ren W, Zhang Y. Changes in electron distribution of aged microplastic and their environmental impacts in aquatic environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:124. [PMID: 40113611 DOI: 10.1007/s10653-025-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are widespread environmental pollutants. This study primarily examines the changes in electro distribution of aged MPs in aquatic environments and their subsequent impact on the environment. Under the action of natural and artificial aging, the electron cloud arrangement of MPs will change, thus affecting the relevant properties of MPs. Among them, the free radicals formed by advanced oxidation technology will be enriched on the surface of MPs carrying benzene rings, and react with other pollutants (organic pollutants, heavy metals, etc.) adsorbed by MPs to form environmental persistent free radicals (EPFRs). The electron cloud density of MPs carrying EPFRs increases, and the reactivity will also increase. Additionally, the oxygen-containing functional groups on the surface of aged MPs enhance their selective adsorption, altering their environmental impact. MPs can serve as a source of free radicals in the environment, enhance the oxidation capacity of other substances in the environment, and even affect the expression of antibiotic resistance genes. In addition, MPs have a high mobility, which will have a greater negative impact in the environment. Additionally, the high mobility of MPs amplifies their negative environmental impact. This study examines the changes in electron distribution of aged MPs and highlights their effects on aquatic ecosystems, providing insights into pollution control, toxicity, and degradation mechanisms.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Chen LH, Chen XY, Song S, Zhang SF, Zhao YG, Lu Y. Preparation of Magnetic Spongy Porous Carbon Skeleton Materials for Efficient Removal of BTEX. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18736-18749. [PMID: 39172386 DOI: 10.1021/acs.langmuir.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Magnetic polymer microspheres have been extensively utilized as separable and highly efficient adsorbents in wastewater treatment. In this study, a series of novel magnetic spongy porous carbon skeleton materials (Mag-SPCS) have been designed and synthesized by acetonitrile suspension precipitation polymerization, which combines the advantages of the acetonitrile precipitation method and the suspension polymerization method. It was demonstrated that the transformation of the material morphology from microspheres to a porous sponge was achieved by a gradual decrease in the usage amount of ethylene glycol. After N,N-dimethyloctadecylamine (C18) was grafted onto the Mag-SPCS materials, the C18-Mag-SPCS materials with a superhigh saturation adsorption capacity and superfast adsorption efficiency were used for the removal of BTEX (toluene, benzene, and para-xylene) in wastewater. Subsequently, the adsorption properties of the composites with different morphologies were evaluated, and the effect of the usage amount of C18 on the adsorption properties of the C18-Mag-SPCS was further investigated. The maximum adsorption capacities of C18-Mag-SPCS for benzene, toluene, and para-xylene were 714.84, 564.32, and 394.48 mg/g, respectively. The adsorption process was conducted in accordance with the proposed secondary and Langmuir models. Finally, the FTIR, XPS, and XRD characterization results before and after adsorption demonstrated that the adsorption mechanism of toluene onto C18-Mag-SPCS was primarily hydrogen bonding, π-π stacking, and van der Waals forces. These findings of the study indicate that the composite material exhibits an ultrahigh saturation adsorption capacity and ultrafast adsorption efficiency, thereby confirming its considerable potential for application in wastewater treatment.
Collapse
Affiliation(s)
- Li-Hui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xing-Yi Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shui-Feng Zhang
- Key Laboratory of Biosafety Detection for Zhejiang Market Regulation, Zhejiang Fangyuan Test Group Co., Ltd., Hangzhou 310018, China
| | - Yong-Gang Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
3
|
Gao K, Yang Y, Li A, Pu J, Takizawa S, Graham NJD, Hou LA. Fouling behavior of BTEX in petrochemical wastewater treated by nanofiltration (NF). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135185. [PMID: 39013320 DOI: 10.1016/j.jhazmat.2024.135185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Membrane fouling generated by small molecular-weight aromatic compounds with poor biodegradability is a major barrier to advanced petrochemical wastewater treatment using nanofiltration (NF) technology. In this study, the fouling behavior of ten BTEX with different substituent existing in petrochemical wastewater on the NF membrane was systematically investigated. By examining the effect of the number, position, and type of substituents on the permeability of NF membranes and membrane resistance analysis, combined with XDLVO theory and correlation analysis, we found that stronger dipole-dipole interactions of BTEX with higher polarity and hydrogen bonding effects between substituents and the membrane surface were verified to be the main forces driving the attachment to the surface of membranes. Furthermore, by analyzing the effect of common inorganic ions in petrochemical wastewater on membrane fouling, it was found that electron-donating substituents (-CH3, -C2H5, and -NH2) enhanced the electron cloud density of the benzene ring, a process that exacerbated membrane fouling by strengthening electrostatic interactions between the benzene ring and Ca2+ ions. The fouling potential of electron-withdrawing substituted (-NO2, -OH) BTEX exhibited the opposite trend. Overall, this study provides a theoretical basis for developing effective membrane fouling control strategies in NF advanced treatment of petrochemical wastewater. ENVIRONMENTAL IMPLICATION: Aromatic chemicals in petrochemical effluent are difficult to degrade, and their accumulation will cause significant harm to humans and ecological systems. Determine the composition of small molecule BTEX in petrochemical wastewater, gain an in-depth comprehension of the membrane fouling behavior of nanofiltration membrane filtration, identify the primary forces causing irreversible membrane surface fouling using experimental data and model fitting, and propose viable anti-fouling membrane modification strategies. Establish a technical foundation for membrane fouling management in the long-term operation of petrochemical wastewater membrane treatment.
Collapse
Affiliation(s)
- Kexuan Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ao Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jian Pu
- Institute for the Advanced Study of Sustainability, United Nations University, Jingumae 5-53-70, Shibuya-ku, Tokyo 150-8925, Japan; Institute for Future Initiatives, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Japan 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Zeng J, Liu X, Chen Q, Hu D. A chemical coating strategy for assembling a boron-doped diamond anode towards electrocatalytic degradation of late landfill leachate. RSC Adv 2024; 14:18355-18366. [PMID: 38854836 PMCID: PMC11160392 DOI: 10.1039/d4ra03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The high efficiency electrocatalytic degradation of late landfill leachate is still not an easy task due to the complexity and variability of organic pollutants. A chemical coating strategy for assembling a boron-doped diamond anode (BDD) towards electrocatalytic degradation of late landfill leachate was adopted and studied. The results shows the high removal rates of organic carbon (TOC) and ammonia nitrogen (NH3-N) after electrochemical oxidation for 5 h can reach 99% and 100%. Further, the organic migration and transformation depends on current density, A/V value, initial pH, electrochemical degradation time, and composition of the stock solution. Specifically, alkaline conditions can increase both TOC and NH3-N removal rates, which is reflected in the NH3-N removal rate of 100% when the pH is 8.5 after only 5 h. The types of organic matter decreased from 63 species to 24 species in 5 h, in which the removal of fulvic acids is superior to that of soluble biometabolites. Amides/olefins and phenolic alcohols are all degraded and converted into other substances or decomposed into CO2 and H2O by BDD, accompanied by the continuous decomposition of alcohol-phenols into alkanes. In all, this study provides a core reference on electrocatalytic degradation of late landfill leachate.
Collapse
Affiliation(s)
- Juanmei Zeng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Xi Liu
- Guangxi Environmental Protection Industry Development Research Institute Co., Ltd, Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology Nanning 530007 China
| | - Qizhi Chen
- Guangxi Huiyuan Manganese Industry Co., Ltd Laibin 546100 China
| | - Dongying Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| |
Collapse
|
5
|
Quilumbaquin W, Castillo-Cabrera GX, Borrero-González LJ, Mora JR, Valle V, Debut A, Loor-Urgilés LD, Espinoza-Montero PJ. Photoelectrocatalytic degradation of high-density polyethylene microplastics on TiO 2-modified boron-doped diamond photoanode. iScience 2024; 27:109192. [PMID: 38433924 PMCID: PMC10906510 DOI: 10.1016/j.isci.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.
Collapse
Affiliation(s)
- Wendy Quilumbaquin
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | | - Luis J. Borrero-González
- Laboratorio de Óptica Aplicada, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Vladimir Valle
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Luis D. Loor-Urgilés
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | |
Collapse
|
6
|
Sun W, Li J, Chen Z, Wang S, Lichtfouse E, Liu H. Decomposition of metal-organic complexes and metal recovery in wastewater: A systematic review and meta-synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169582. [PMID: 38154646 DOI: 10.1016/j.scitotenv.2023.169582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Metals are rarely found as free ions in natural and anthropogenic environments, but they are often associated with organic matter and minerals. Under the context of circular economy, metals should be recycled, yet they are difficult to extract for their complex forms in real situations. Based on the protocols of review methodology and the analysis of VOS viewer, there are few reviews on the properties of metal-organic complexes, decomplexation methods, the effect of coexisting ions, the pH influence, and metal recovery methods for the increasingly complicated metal-organic complexes wastewater. Conventional treatment methods such as flocculation, adsorption, biological degradation, and ion exchange fail to decompose metal-organic complexes completely without causing secondary pollution in wastewater. To enhance comprehension of the behavior and morphology exhibited by metal-organic complexes within aqueous solutions, we presented the molecular structure and properties of metal-organic complexes, the decomplexation mechanisms that encompassed both radical and non-radical oxidizing species, including hydroxyl radical (OH), sulfate radical (SO˙4-), superoxide radical (O˙2-), hydrogen peroxide (H2O2), ozone (O3), and singlet oxygen (1O2). More importantly, we reviewed novel aspects that have not been covered by previous reviews considering the impact of operational parameters and coexisting ions. Finally, the potential avenues and challenges were proposed for future research.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuwen Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Bagastyo AY, Sidik F, Anggrainy AD, Lin JL, Direstiyani LC, Nurhayati E. Simultaneous removal of organic and nitrogenous compounds in mature landfill leachate by a hybrid electro-oxidation-dialysis (EOD) system. ENVIRONMENTAL TECHNOLOGY 2024; 45:867-879. [PMID: 36169980 DOI: 10.1080/09593330.2022.2130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical process has been widely applied to eliminate recalcitrant contaminants (i.e., organic and nitrogenous compounds) in landfill leachate. This study aimed to evaluate the performance of a hybrid electro-oxidation-dialysis (EOD) system to minimize organic and nitrogenous compounds through a synergistic process of electrochemical oxidation (EO) and electrodialysis (ED) as well as the dissolved organic matter was characterized in terms of fluorescent component and molecular weight distribution. The EOD was carried out using boron-doped diamond (BDD) and Pt alternately. The results have shown that pH adjustment to acidic conditions is beneficial to EO. At optimal pH (pH 4), BDD-based EO is superior to removing COD and NH 4 + up to around 56% and 64%, respectively. During EOD process, the lower current density at 20.83 mA cm-2 is preferred for the recovery of nitrogenous ions (i.e. NH 4 + and NO 3 - ), especially for BDD-EOD. In addition, the dominant humic acid-like (HAL) and soluble microbial products-like (SMPL) substances in the mature leachate are mostly degraded to smaller molecules from 105 Da to 103 Da in both EOD processes. Overall, BDD-EOD favours indirect oxidation and has a higher energy consumption efficiency than Pt-EOD induced by direct oxidation for simultaneous removal of organic and nitrogenous compounds. BDD-EOD requires a lower total operation cost of around $2.33/m3 compared to Pt-EOD. It is concluded that the hybrid BDD-EOD process is technically feasible as a powerful pre-treatment approach to mature landfill leachate for refractory organics degradation and nitrogenous nutrients recovery.
Collapse
Affiliation(s)
- Arseto Yekti Bagastyo
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Fahrudin Sidik
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| | - Anita Dwi Anggrainy
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Jr-Lin Lin
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
- Center for Environmental Risk Management, College of Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| | - Lucky Caesar Direstiyani
- Environmental Engineering Study Program, Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
| | - Ervin Nurhayati
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| |
Collapse
|
8
|
Zhang Y, Duy SV, Whalen JK, Munoz G, Gao X, Sauvé S. Cyanotoxins dissipation in soil: Evidence from microcosm assays. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131534. [PMID: 37146322 DOI: 10.1016/j.jhazmat.2023.131534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Cyanobacteria proliferate in warm, nutrient-rich environments, and release cyanotoxins into natural waters. If cyanotoxin-contaminated water is used to irrigate agricultural crops, this could expose humans and other biota to cyanotoxins. However, cyanotoxins may be degraded by the diverse microbial consortia, be adsorbed or otherwise dissipate in agricultural soil. This study investigates the disappearance and transformation of 9 cyanotoxins in controlled soil microcosms after 28 d. Six soil types were exposed to factorial combinations of light, redox conditions and microbial activity that influenced the recovery of anabaenopeptin-A (AP-A), anabaenopeptin-B (AP-B), anatoxin-a (ATX-a), cylindrospermopsin (CYN), and the microcystin (MC) congeners -LR, -LA, -LY, -LW, and -LF. Cyanotoxins estimated half-lives were from hours to several months, depending on the compound and soil conditions. Cyanotoxins were eliminated via biological reactions in aerobic and anaerobic soils, although anaerobic conditions accelerated the biological dissipation of ATX-a, CYN and APs. ATX-a was sensitive to photolytic degradation, but CYN, and MCs were not reduced through photochemical transformation. MC-LR and -LA were recovered after exposure to light, redox conditions and low microbial activity, suggesting that they persisted in extractable forms, compared to other cyanotoxins in soil. Cyanotoxin degradation products were identified using high-resolution mass spectrometry, revealing their potential degradation pathways in soil.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Xuesong Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
9
|
Li Z, Luo ZM, Huang Y, Wang JW, Ouyang G. Recent trends in degradation strategies of PFOA/PFOS substitutes. CHEMOSPHERE 2023; 315:137653. [PMID: 36581124 DOI: 10.1016/j.chemosphere.2022.137653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global elimination and restriction of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, have urged manufacturers to shift production to their substitutes which still pose threat to the environment with their bioaccumulation, toxicity and migration issues. In this context, efficient technologies and systematic mechanistic studies on the degradation of PFOA/PFOS substitutes are highly desirable. In this review, we summarize the progress in degrading PFOA/PFOS substitutes, including four kinds of mainstream methods. The pros and cons of the present technologies are analyzed, which renders the discussion of future prospects on rational optimizations. Additional discussion is made on the differences in the degradation of various kinds of substitutes, which is compared to the PFOA/PFOS and derives designing principles for more degradable F-containing compounds.
Collapse
Affiliation(s)
- Zizi Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Mei Luo
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Wei Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Tian L, Zhang L, Zheng L, Chen Y, Ding L, Fan J, Wu D, Zou J, Luo S. Overcoming Electrostatic Interaction via Strong Complexation for Highly Selective Reduction of CN
−
into N
2. Angew Chem Int Ed Engl 2022; 61:e202214145. [DOI: 10.1002/anie.202214145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Lei Tian
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources & Environment Nanchang University Nanchang Jiangxi 330031 P. R. China
| | - Long‐Shuai Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Ling‐Ling Zheng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources & Environment Nanchang University Nanchang Jiangxi 330031 P. R. China
| | - Ying Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources & Environment Nanchang University Nanchang Jiangxi 330031 P. R. China
| | - Lin Ding
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Jie‐Ping Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources & Environment Nanchang University Nanchang Jiangxi 330031 P. R. China
| | - Dai‐She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources & Environment Nanchang University Nanchang Jiangxi 330031 P. R. China
| | - Jian‐Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources & Environment Nanchang University Nanchang Jiangxi 330031 P. R. China
| | - Sheng‐Lian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| |
Collapse
|
11
|
Borba FH, Hahn CL, Mayer I, Seibert D, Guimarães RE, Inticher JJ, Zorzo CF, Kreutz GK. New hybrid strategy of the photo-Fered-Fenton process assisted by O 3 for the degradation of wastewater from the pretreatment of biodiesel production. CHEMOSPHERE 2022; 306:135470. [PMID: 35753413 DOI: 10.1016/j.chemosphere.2022.135470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The present work aims to fill a scientific gap regarding the treatment of wastewater from the enzymatic pretreatment of biodiesel production (WEPBP), as well as the identification of organic contaminants present in this complex matrix. Different treatment strategies were proposed for the removal of total organic carbon (TOC) and chemical oxygen demand (COD) from WEPBP. The interesting combination of O3/H2O2/UV-Vis and electrocoagulation (EC) process was studied in two setups, with the EC process applied prior to O3/H2O2/UV-Vis and vice versa. Further, the innovative hybrid system based on the photo-Fered-Fenton process with O3 addition (PEF-Fere-O3) was preliminarily studied for WEPBP treatment. The hybrid system provided the best results for the WEPBP treatment when the reactor was operated at pH of 4.5, 65 mg O3 L-1 and 10000 mg H2O2 L-1, UV-Vis was used as the irradiation source, and the current intensity of 3.0 A. Removals of 45% of TOC and 68.7% of COD were reached within 45 min. Oleic acid, linoleic acid, and Diisooctyl phthalate (DIOP) were the main organic contaminants identified in the WEPBP as determined by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Acute toxicity assays with the bio indicator Artemia salina were carried out in untreated and treated WEPBP samples, indicating that the PEF-Fere-O3 treatment decreased the amount of contaminants present in the WEPBP as well as reduced the toxicity levels and increased biodegradability index, suggesting its great potential for the treatment of complex industrial wastewaters.
Collapse
Affiliation(s)
- Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil.
| | - Cláudia L Hahn
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Ildemar Mayer
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa, UEM, Av. Colombo, 5790 Maringa, CEP: 87020-900, Paraná, PR, Brazil
| | - Raíssa E Guimarães
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Gustavo K Kreutz
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| |
Collapse
|
12
|
Lu J, Hou R, Wang Y, Zhou L, Yuan Y. Surfactant-sodium dodecyl sulfate enhanced degradation of polystyrene microplastics with an energy-saving electrochemical advanced oxidation process (EAOP) strategy. WATER RESEARCH 2022; 226:119277. [PMID: 36283230 DOI: 10.1016/j.watres.2022.119277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 05/09/2023]
Abstract
Microplastics have been identified as a kind of emerging pollutant with potential ecological risks, and it is an urgent endeavor to find proper technologies for their remediation. Electrochemical advanced oxidation process (EAOP) technology has exhibited robust performance in the removal of various refractory organic pollutants. In this study, we explored a new remediation strategy for polystyrene microplastics (PS MPs), introducing sodium dodecyl sulfate (SDS) to enhance its degradation performance in boron-doped diamond (BDD) anode adopted EAOP. At first, we investigated the degradation behaviors of SDS in the BDD electrolysis. According to the SDS half-life under various current densities, the SDS addition strategy into EAOP is proposed; that is, supplement SDS to 500 mg/L at every half-life during electrolysis except the last cycle. Results indicated that SDS addition greatly enhanced MPs degradation rate in 72 h of EAOP, about 1.35-2.29 times higher than that in BDD electrolysis alone. The SDS assisted EAOP also led to more obvious changes in the particle size, morphology, and functional groups of the MPs. After treatment, a variety of alkyl-cleavage and oxidation products were identified, which attributed to the strong attack of oxidants (i.e., persulfate) on the MPs. The enhanced persulfate generation and oxidants adsorption on MPs can explain the enhancement effect in the EAOP strategy. Cost analysis results showed the surfactant only accounts for < 0.05% of the total operating costs in the SDS assisted EAOP. In general, the current study provided new insight into the effective way to improve the EAOP efficiency of microplastics.
Collapse
Affiliation(s)
- Jinrong Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Tian X, Chen Y, Chen Y, Chen D, Wang Q, Li X. Removal of Gaseous Hydrogen Sulfide by a FeOCl/H 2O 2 Wet Oxidation System. ACS OMEGA 2022; 7:8163-8173. [PMID: 35284743 PMCID: PMC8908517 DOI: 10.1021/acsomega.2c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 05/29/2023]
Abstract
The removal of gaseous hydrogen sulfide using FeOCl/H2O2 was studied. The effects of the FeOCl dosage, the H2O2 concentration, the reaction temperature, and the gas flow rate on the removal of H2S were investigated. The reaction products were analyzed, and the characterization of FeOCl was carried out by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy. Furthermore, radical quenching experiments were carried out using butylated hydroxytoluene, isopropanol, and benzoquinone. It was found that the H2S removal rate for a H2S gas concentration of 160 ppm reached 85.6% when bubbling through 100 mL of an aqueous solution containing FeOCl (1 g/L) and H2O2 (0.33 mol/L) at 293 K with a flow rate of 135 mL/min. Although the dissolution of chlorine in FeOCl was found to result in reduced catalytic performance, the activity was restored after soaking the catalyst in concentrated hydrochloric acid (37%) and subsequent calcination. The mechanism of H2S removal was also discussed, and it was found that this process was controlled by H2S diffusion. FeOCl was found to activate H2O2 and produce radicals, such as •OH and •O2 -, resulting in the formation of a water film rich in radicals on the FeOCl surface. Following the diffusion of H2S into the water film, it underwent oxidation by radicals to produce SO4 2-. Overall, the catalyst and the product can be effectively separated.
Collapse
Affiliation(s)
- Xiubo Tian
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Ying Chen
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
- United
National-Local Engineering Laboratory of Harbor Oil & Gas Storage
and Transportation Technology, No. 1, Haida South Road, Dinghai District, Zhoushan 316022, Zhejiang, P. R. China
- Zhejiang
Provincial Key Laboratory of Petrochemical Pollution Control, Dinghai District, Zhoushan 316022, Zhejiang, P.
R. China
| | - Yong Chen
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Dong Chen
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Quan Wang
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| | - Xiaohong Li
- College
of Petrochemical Engineering and Environment, Zhejiang Ocean University, No. 1, Haida South Road, Dinghai
District, Zhoushan 316022, Zhejiang, P. R. China
| |
Collapse
|