1
|
Aseman-Bashiz E, Sayyaf H. Sonoelectrochemical degradation of aspirin in aquatic medium using ozone and peroxymonosulfate activated with FeS 2 nanoparticles. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104419. [PMID: 39270599 DOI: 10.1016/j.jconhyd.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
The catalytic performance of nano-FeS2 in the sonoelectrochemical activation of peroxymonosulfate (PMS) and ozone to remove aspirin (ASP) was studied for the first time. The crystal structure and Fe bonds in the catalyst were confirmed through XRD and FTIR analysis. Within 30 min, ASP (TOC) was removed by 99.2 % (81.6 %) and 98.6 % (77.4 %) in nano-FeS2/PMS and nano-FeS2/O3 sonoelectrochemical systems, respectively. Water anions, especially (almost 50 %), had an inhibitory effect on ASP removal. The probes confirmed that SO4•-and HO• were the key to ASP degradation in nano-FeS2/PMS and nano-FeS2/O3 systems, respectively. The effective activation of oxidants due to the ideal distribution of Fe2+ by catalyst was the main mechanism of ASP removal, in which electric current (EC) and ultrasound (US) played a crucial role through the recycling of Fe ions, dissolution and cleaning of the catalyst. LC-MS analysis identified thirteen byproducts in the ASP degradation pathways. The energy consumption of the proposed sonoelectrochemical systems was lower than previous similar systems. This study presented economic and sustainable hybrid systems for pharmaceutical wastewater remediation.
Collapse
Affiliation(s)
- Elham Aseman-Bashiz
- Environmental Health Engineering Lecturer, Alifard (SANICH) Institute of Applied Nscience and Technology, Hashtgerd, Alborz, Iran; National Water and Wastewater Engineering Company, Department of Supervision of Wastewater Operation, Tehran, Iran
| | - Hossein Sayyaf
- Environmental Health Engineering Lecturer, Alifard (SANICH) Institute of Applied Nscience and Technology, Hashtgerd, Alborz, Iran; Department of Environmental Health Engineering, Tehran University of Medical Sciences, Health Assistant Department, South Tehran Health Center, Tehran, Iran.
| |
Collapse
|
2
|
Ojo BO, Arotiba OA, Mabuba N. A review on reactive oxygen species generation, anode materials and operating parameters in sonoelectrochemical oxidation for wastewater remediation. CHEMOSPHERE 2024; 364:143218. [PMID: 39218257 DOI: 10.1016/j.chemosphere.2024.143218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The application of sonoelectrochemical (SEC) oxidation technique involving the incorporation of ultrasound irradiation into an electrochemical oxidation system has found enormous success for various purposes, especially for organic synthesis and water treatment. Although its industrial application towards the removal of organic contaminants in water is not popular, its success on the laboratory scale is often attributed to the physical and chemical effects. These effects arise from the influence of ultrasound irradiation, thus eliminating electrode passivation or fouling, improving mass transfer and enhancing reactive oxygen species (ROS) generation. The continuous activation of the electrode surface, improved reaction kinetics and other associated advantages are equally occasioned by acoustic streaming and cavitation. This review hereby outlines common ROS generated in SEC oxidation and pathways to their generation. Furthermore, classes of materials commonly employed as anodes and the influence of prominent operational parameters on the performance of the technique for the degradation of organic pollutants in water are extensively discussed. Hence, this study seeks to broaden the significant promises offered by SEC oxidation to environmentally sustainable technology advances in water treatment and pollution remediation.
Collapse
Affiliation(s)
- Babatope O Ojo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
3
|
Zeng L, Huang C, Tang Y, Wang C, Lin S. Tetracycline degradation by dual-frequency ultrasound combined with peroxymonosulfate. ULTRASONICS SONOCHEMISTRY 2024; 106:106886. [PMID: 38692020 PMCID: PMC11077164 DOI: 10.1016/j.ultsonch.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Tetracycline has received a great deal of interest for the harmful effects of substance abuse on ecosystems and humanity. The effects of different processes on the degradation of tetracycline were compared, with dual-frequency ultrasound (DFUS) in combination with peroxymonosulfate (PMS) being the most effective for the tetracycline degradation. Free radical scavenging experiments showed that O2∙-,SO4∙- and •OH were the main reactive radicals in the degradation of tetracycline. According to the major intermediates of tetracycline degradation identified, three possible degradation pathways were proposed, which are of significance for translational studies of tetracycline degradation. Notably, these intermediates were found to be significantly less toxicity. The number of active bubbles in the degradation vessel was calculated using a semi-empirical formula, and a higher value of 1.44 × 108 L-1s-1 of bubbles was obtained when using dual-frequency ultrasound at 20 kHz (210 W/L) and 80 kHz (85.4 W/L). Therefore, compared to 20 kHz, although the yield of strong oxidizing substances from individual active bubbles decreased slightly, a significant increment of the number of active bubbles still resulted in a higher synergistic effect, and the combination of DFUS and PMS should be effective in promoting the generation of reactive free radicals and mass transfer processes within the degradation vessel, which provides a method for efficient removal of tetracycline from wastewater.
Collapse
Affiliation(s)
- Long Zeng
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Chenyang Huang
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yifan Tang
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
| | - Chenghui Wang
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.
| | - Shuyu Lin
- Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Khamis A, Mahmoud AS, El Naga AOA, Shaban SA, Youssef NA. Activation of peroxymonosulfate with ZIF-67-derived Co/N-doped porous carbon nanocubes for the degradation of Congo red dye. Sci Rep 2024; 14:12313. [PMID: 38811620 PMCID: PMC11137160 DOI: 10.1038/s41598-024-62029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
In this study, porous carbon nanocubes encapsulated magnetic metallic Co nanoparticles (denoted as Co@N-PCNC) was prepared via pyrolyzing ZIF-67 nanocubes precursor at 600 °C and characterized by various technologies. It was used to activate peroxymonosulfate (PMS) to degrade Congo red (CR) dye efficiently. Over 98.45% of 50 mg L-1 CR was degraded using 0.033 mM PMS activated by 75 mg L-1 Co@N-PCNC within 12 min. The free radical quenching experiments were performed to reveal the nature of the reactive oxygen species radicals generated throughout the catalytic oxidation of CR. The effects of common inorganic anions and the water matrix on CR removal were studied. Moreover, the results of the kinetic study revealed the suitability of the pseudo-first-order and Langmuir-Hinshelwood kinetic models for illustrating CR degradation using the Co@N-PCNC/PMS system. Ultimately, the Co@N-PCNC displayed good operational stability, and after five cycles, the CR removal rate can still maintain over 90% after 12 min.
Collapse
Affiliation(s)
- Aya Khamis
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Aya S Mahmoud
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Ahmed O Abo El Naga
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Seham A Shaban
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Nadia A Youssef
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Feng K, Mu S, Fang F, Xie M. An assessment of the UV/nFe 0 /H 2 O 2 system for the removal of refractory organics in the effluent produced by the biological treatment of landfill leachate. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10801. [PMID: 36307975 DOI: 10.1002/wer.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The removal efficiency and mechanism of the ultraviolet/nanoscale Fe0 /H2 O2 (UV/nFe0 /H2 O2 ) system for refractory organics in membrane bioreactor effluent were investigated. The most effective removal of organics was achieved at initial pH = 3.0, H2 O2 dosage = 50 mM, nFe0 dosage = 1.0 g/L, and UV power = 15 W, with a reaction time of 60 min. Under these conditions, the absorbance at 254 nm, chromaticity, and total organic carbon removal efficiencies were 65.13%, 79.67%, and 61.51%, respectively, and the aromaticity, humification, molecular weight, and polymerization of organics were all significantly reduced. The surface morphology and elemental valence analysis of nano zero-valent iron (nFe0 ) before and after the reaction revealed the formation of iron-based (hydrated) oxides, such as Fe2 O3 , Fe3 O4 , FeOOH, and Fe (OH)3 , on the surface of the nFe0 . Refractory organics were removed by Fenton-like reactions in the homogeneous and heterogeneous adsorption-precipitation of iron-based colloids. At the same time, UV radiation accelerated the formation of Fe2+ on the nFe0 surface and promoted the Fe3+ /Fe2+ redox cycle to a certain extent, enhancing the removal of refractory organics. The results provide a theoretical basis for the application of the UV/nFe0 /H2 O2 system to remove refractory organics in the effluent produced by the biological treatment of landfill leachate. PRACTITIONER POINTS: The UV/nFe0 /H2 O2 process is effective in refractory organics removal in leachate treatment. Humus in leachate was largely destroyed and mineralized by the UV/nFe0 /H2 O2 process. Active nFe0 material participated in the Fenton-like process and was promoted by UV. The effects of nFe0 material and UV introduction were investigated.
Collapse
Affiliation(s)
- Ke Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feiyan Fang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mingde Xie
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
6
|
Chloride-Enhanced Removal of Ammonia Nitrogen and Organic Matter from Landfill Leachate by a Microwave/Peroxymonosulfate System. Catalysts 2022. [DOI: 10.3390/catal12101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Landfill leachate contains not only high concentrations of refractory organic matter and ammonia nitrogen, but also high concentrations of chloride ions (Cl−). The modification of reactive species of the peroxymonosulfate (PMS) oxidation system by Cl− and its priority sequence for the removal of NH4+-N and organic matter from landfill leachate remain unclear. This study investigated the removal characteristics of NH4+-N and organic matter in the microwave (MW)/PMS system with high Cl− content. The results show that increasing Cl− concentration significantly improves the production of hypochlorous acid (HOCl) in the MW/PMS system under acidic conditions, and that the thermal and non-thermal effects of MW irradiation have an important influence on the HOCl produced by PMS activation. The maximum cumulative concentration of HOCl was 748.24 μM after a reaction time of 2 min. The formation paths of HOCl are (i) SO4•− formed by the MW/PMS system interacting with Cl− and HO•, and (ii) the nucleophilic addition reaction of PMS and Cl−. Moreover, the high concentration of HOCl produced by the system can not only remove NH4+-N in situ, but also interact with PMS to continuously generate Cl• as an oxidant to participate in the reaction with pollutants (e.g., NH4+-N and organic matter). Common aqueous substances (e.g., CO32−, HCO3−, NO3−, and humic acid) in landfill leachate will compete with NH4+-N for reactive species in the system, and will thereby inhibit its removal to a certain extent. It was found that when NH4+-N and leachate DOM co-exist in landfill leachates, they would compete for reactive species, and that humic acid-like matter was preferentially removed, leading to the retention of fulvic acid-like matter. It is hoped that this study will provide theoretical support for the design and optimization of methods for removing NH4+-N and organic matter from landfill leachate with high chloride ion content.
Collapse
|