1
|
Cui Q, Huang Y, Ma X, Li S, Bai R, Li H, Liu W, Wei H. Research on the Adsorption Mechanism and Performance of Cotton Stalk-Based Biochar. Molecules 2024; 29:5841. [PMID: 39769930 PMCID: PMC11678485 DOI: 10.3390/molecules29245841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
In this research, we produced two types of biochar (BC) using cotton stalks as raw material and KOH as an activator, and compared their performance and adsorption mechanisms in the removal of tetracycline (TC) and methylene blue (MB) from wastewater. The results showed that the biochar generated using both procedures formed pores that connected to the interior of the biochar and had extensive microporous and mesoporous structures. The molten salt approach produces biochar with a higher specific surface area, larger pore size, and higher pore volume than the impregnation method, with a maximum specific surface area of 3095 m2/g. KBCM-900 (the BC produced using the molten salt method at 900 °C) had a better adsorption effect on TC, with a clearance rate of more than 95% in 180 min and a maximum adsorption amount of 912.212 mg/g. The adsorption rates of the two BCs for MB did not differ significantly at low concentrations, but as the concentration increased, KBCI-900 (the BC generated by the impregnation method at 900 °C) exhibited better adsorption, with a maximum adsorption of 723.726 mg/g. The pseudo-second-order kinetic model and the Langmuir isotherm model may accurately describe the TC and MB adsorption processes of KBCI-900 and KBCM-900. The KBCI/KBCM-900 adsorption process combines physical and chemical adsorption, with the primary mechanisms being pore filling, π-π interactions, hydrogen bonding, and electrostatic interactions. As a result, biochar generated using the molten salt method is suitable for the removal of large-molecule pollutants such as TC, whereas biochar prepared using the impregnation method is suitable for the removal of small-molecule dyes such as MB.
Collapse
Affiliation(s)
- Qiushuang Cui
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
| | - Yong Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
- College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830017, China
| | - Xufei Ma
- Department of Chemistry and Applied Chemistry, Changji University, Changji 831110, China;
| | - Sining Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
| | - Ruyun Bai
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
| | - Huan Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
| | - Wen Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
| | - Hanyu Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (Q.C.); (R.B.); (H.L.); (W.L.); (H.W.)
| |
Collapse
|
2
|
Liu A, Feng LJ, Ou Y, Zhang X, Zhang J, Chen H. Competitive adsorption of polycyclic aromatic hydrocarbons on phosphorus tailing-modified sludge biochar provides mechanistic insights. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:497. [PMID: 39508923 DOI: 10.1007/s10653-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Biochar has been widely used to solve the wastewater pollution of polycyclic aromatic hydrocarbons (PAHs). However, the competition of PAHs with different benzene ring numbers (e.g., phenanthrene [Phe], pyrene [Pyr], and benzo[a]pyrene [BaP]) for adsorption sites on biochar has received little attention. In this study, biochar was produced by co-pyrolysis of sludge and phosphorus tailing at different temperatures (300, 500, or 800 °C) to adsorb PAHs. The results show that phosphorus tailing increased the adsorption of PAH by increasing the biochar's BET surface area (SBET), micropore volume, hydrophobicity (at low temperatures) and aromaticity (at high temperatures). The maximum adsorption capacities were 29.90 µmol/g for Phe, 25.58 µmol/g for Pyr and 20.45 µmol/g for BaP, respectively. Importantly, the types and functions of groups involved in the adsorption of various PAHs were discussed. Adsorption of Phe and Pyr on the biochar mainly involved C=O and C-O-C functional groups, and there was a certain degree of competition between these PAHs for those sites. In contrast, BaP mainly adsorbed at C-OH and C=C moieties, without competing with Phe or Pyr at C-OH sites. The competitive edge of BaP was also stronger than that of Phe and Pyr on C=C functional groups. The adsorption mechanisms involving pore filling, hydrophobic interactions, and π-π interactions governed the adsorption of the evaluated PAHs. Overall, the adsorption of PAHs on biochar followed a heterogeneous chemical adsorption process.
Collapse
Affiliation(s)
- Anrong Liu
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Li-Juan Feng
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China.
| | - Yangyang Ou
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, 550001, People's Republic of China
| | - Xiaoya Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Jinhong Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Hongyan Chen
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| |
Collapse
|
3
|
Quang HHP, Dinh NT, Truong QM, Nguyen PKT, Nguyen VH. Unlocking the potential of environmentally friendly adsorbent derived from industrial wastes: A review. CHEMOSPHERE 2024; 367:143662. [PMID: 39489305 DOI: 10.1016/j.chemosphere.2024.143662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
With increasing urbanization and industrialization, growing amounts of industrial waste, such as red mud (RM), fly ash (FA), blast furnace slag (BFS), steel slag (SS), and sludge, are being produced, exposing substantial threats to the environment and human health. Given that numerous researchers associate with conventional adsorbents, developing and utilizing industrial wastes derived from adsorption technology still has received limited attention. Utilizing this waste contributes to developing alternative materials with superior performance and significantly reduces the volume of solid waste. The excellent physical and chemical characteristics of these wastes are also investigated in this paper. This review attempts to demonstrate a comprehensive overview of the application of industrial waste-based adsorbent in the adsorption process for removing organic pollutants, dyes, metallic ions, non-metallic ions, and radioactive substances. In addition, industrial waste-based adsorbents are among the most promising and applicable techniques for pollutant removal, offering remarkable adsorption efficiency, rich surface chemistries, reasonable cost, simple operation, and low energy consumption. This review summarizes state-of-the-art advancements in engineered adsorbents (including physical and chemical modifications). It provides a holistic view regarding a comprehensive understanding of the mechanism involved in adsorption for water remediation. The challenges and the prospects for future research in applying these adsorbents are also elucidated, contributing to sustainable waste management and environmental sustainability.
Collapse
Affiliation(s)
- Huy Hoang Phan Quang
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Nga Thi Dinh
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City, Viet Nam
| | - Quoc-Minh Truong
- Faculty of Natural Resources and Environment, School of Law and Development Management, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Phan Khanh Thinh Nguyen
- School of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
4
|
Chen L, Deng Y, Li P, Yang H, Su H, Wang N, Yang R. Effect of metal-modified sewage sludge biochar tubule on immobilization of chromium in unsaturated soil: Groundwater table fluctuations induced by rainfall. CHEMOSPHERE 2024; 365:143378. [PMID: 39306109 DOI: 10.1016/j.chemosphere.2024.143378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Many studies have studied biochar immobilizing chromium (Cr) in soil. However, few studies were conducted to reduce the environmental risks due to biochar aging in soil. In this study, we adopt FeCl3, MgCl2, and AlCl3 to activate sewage sludge to form modified biochar and produce biochar tubules. Then, the column experiments were carried out to study the effect of fluctuating groundwater table on Cr leaching behavior, total Cr, and fractions distribution with the insertion of biochar tubule. Results showed that the Cr immobilization performance was improved by metal-modification biochar, the biochar tubules can significantly decrease the Cr leaching amounts, retard the Cr downward migration in the soil, and there was a better effect with slightly Cr-contaminated soil. In addition, the immobilization effect is also impacted by the biochar's application mode and the hydrodynamic conditions. Detailedly, the Cr leaching amounts maximally decreased by 33.39%, the residual amounts maximally increased by 10.05% in the soil column, and the exchangeable (EX) and carbonates-bound (CB) fractions were maximally increased by 85.18%, 151.78% at the equal depth of soil column, respectively. BET, SEM-EDS, XRD, and FTIR analyses revealed that biochars' immobilization mechanisms on Cr involved reduction(predominately), physisorption, precipitation, and complexation. Risk assessment demonstrated that the sewage sludge biochar has very low environmental risk. This study indicates that the biochar tubule applied to immobilize Cr in soil has potential and provides new insights into reducing environmental risks due to biochar aging.
Collapse
Affiliation(s)
- Lin Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yinger Deng
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Pengjie Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hongkun Yang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hu Su
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Ning Wang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Rui Yang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
5
|
Huang J, Tan X, Xie Y, Wu X, Dahn SL, Duan Z, Ali I, Cao J, Ruan Y. A new approach to explore and assess the sustainable remediation of chromium-contaminated wastewater by biochar based on 3E model. CHEMOSPHERE 2024; 353:141600. [PMID: 38458355 DOI: 10.1016/j.chemosphere.2024.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
As a cost-effective material, biochar, known as 'black gold', has been widely used for environmental applications (EA), including chromium-contaminated wastewater remediation. However, limited reports focused on the multiple impacts of biochar, including energy consumption (EC) and environmental risk (ER). Hence, to recommend biochar as a green material for sustainable development, the three critical units were explored and quantitatively assessed based on an adapted 3E model (EA-EC-ER). The tested biochar was produced by limited-oxygen pyrolysis at 400-700 °C by using three typical biomasses (Ulva prolifera, phoenix tree, and municipal sludge), and the optimal operational modulus of the 3E model was identified using six key indicators. The findings revealed a significant positive correlation between EC and biochar yield (p < 0.05). The biochar produced by phoenix tree consumed more energy due to having higher content of unstable carbon fractions. Further, high-temperature and low-temperature biochar demonstrated different chromium removal mechanisms. Notably, the biochar produced at low temperature (400 °C) achieved better EA due to having high removal capacity and stability. Regarding ER, pyrolysis temperature of 500 °C could effectively stabilize the ecological risk in all biochar and the biochar produced by Ulva prolifera depicted the greatest reduction (37-fold). However, the increase in pyrolysis temperature would lead to an increase in global warming potential by nearly 22 times. Finally, the 3E model disclosed that the biochar produced by Ulva prolifera at 500 °C with low EC, high EA, and low ER had the most positive recommendation index (+78%). Importantly, a rapid assessment methodology was established by extracting parameters from the correlation. Based on this methodology, about eight percent of biochar can be the highest recommended from more than 100 collected peer-related data. Overall, the obtained findings highlighted that the multiple impacts of biochar should be considered to efficiently advance global sustainable development goals.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yue Xie
- Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou, 233100, China
| | - Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Stephen L Dahn
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Gao J, Zhou Y, Yang X, Yao Y, Qi J, Zhu Z, Yang Y, Fang D, Zhou L, Li J. Dyeing sludge-derived biochar for efficient removal of antibiotic from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169035. [PMID: 38056677 DOI: 10.1016/j.scitotenv.2023.169035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Adsorption is one of the most effective methods for ecotoxic antibiotics removal, while developing high-performance adsorbents with excellent adsorption capacity is indispensable. As the unavoidable by-product of wastewater, sewage sludge has dual properties of pollution and resources. In this study, dyeing sludge waste was converted to biochar by KOH activation and pyrolysis, and used as an efficient adsorbent for aqueous antibiotics removal. The optimized dyeing sludge-derived biochar (KSC-8) has excellent specific surface area (1178.4 m2/g) and the adsorption capacity for tetracycline (TC) could reach up to 1081.3 mg/g, which is four and five times higher than those without activation, respectively. The PSO (pseudo-second-order) kinetic model and the Langmuir isotherm model fitted better to the experimental data. The obtained KSC-8 has stabilized adsorption capacity for long-term fixed-bed experiments, and maintained 86.35% TC removal efficiency after five adsorption-regeneration cycles. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, π-π interactions and pore filling. This work is a green and eco-friendly way as converting the waste to treat waste in aiming of simultaneous removal of antibiotics and resource recovery of dyeing sludge.
Collapse
Affiliation(s)
- Jiamin Gao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuran Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Di Fang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
7
|
O'Boyle M, Mohamed BA, Li LY. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach. CHEMOSPHERE 2024; 350:141074. [PMID: 38160959 DOI: 10.1016/j.chemosphere.2023.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Enormous annual sewage sludge (SS) volumes pose global environmental challenges owing to contamination and significant greenhouse gas emissions. Here, we investigated the economic viability of co-pyrolyzing SS and biomass waste to produce biofuels (bio-oil and gas) and biochar. Net present worth (NPW) analysis, the sale product break-even price, and sludge handling price (SHP) were used to determine the profitability of co-pyrolysis compared with SS pyrolysis alone and conventional treatment methods. In this study, the sale prices of biochar based on quality (i.e., stability, carbon sequestration effectiveness, and heavy metal content) were estimated to be 2.24, 1.44, and 0.98 CAD/kg for high-, medium-, and low-grade biochar. The bio-oil prices, estimated based on the higher heating values of bio-oil and diesel, ranged from 0.80 to 1.22 CAD/kg. Sawdust (SD) and wheat straw (WS) were the chosen co-pyrolysis feedstocks, with four mixing ratios (20, 40, 60, and 80 wt%). Economically, SD (40 wt% mixing ratio) co-pyrolysis achieved the best performance, with a maximum NPW of 8.71 million CAD. SD single and co-pyrolysis were the only profitable scenarios. Moreover, SS single pyrolysis and WS co-pyrolysis exhibited higher profitability than conventional SS treatment methods, with SHPs of 65 and 40 CAD/1000 kg dry sludge, respectively. Sensitivity analysis highlighted the dependence of economic performance on biochar and bio-oil market value. This study offers the first economic analysis of this approach and enhances our understanding of the potential of co-pyrolysis for biofuel and biochar production, providing innovative solutions for the environmental challenges of SS disposal.
Collapse
Affiliation(s)
- Marnie O'Boyle
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
8
|
Li S, Song M, Tong L, Ye C, Yang Y, Zhou Q. Enhancing fluoride removal from wastewater using Al/Y amended sludge biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125832-125845. [PMID: 38006482 DOI: 10.1007/s11356-023-31147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
This study explored the potential of utilizing aluminum and yttrium amended (Al/Y amended) sewage sludge biochar (Al/Y-CSBC) for efficient fluoride removal from wastewater. The adsorption kinetics of fluoride on bimetallic modified Al/Y-CSBC followed the pseudo-second-order model, while the adsorption isotherm conformed to the Freundlich equation. Remarkably, the material exhibited excellent fluoride removal performance over a wide pH range, achieving a maximum adsorption capacity of 62.44 mg·g-1. Moreover, Al/Y-CSBC demonstrated exceptional reusability, maintaining 95% removal efficiency even after six regeneration cycles. The fluoride adsorption mechanism involved ion exchange, surface complexation, and electrostatic adsorption interactions. The activation and modification processes significantly increased the specific surface area of Al/Y-CSBC, leading to a high isoelectric point (pHpzc = 9.14). The incorporation of aluminum and yttrium metals exhibited a novel approach, enhancing the adsorption capacity for fluoride ions due to their strong affinity. Furthermore, the dispersing effect of biochar played a crucial role in improving defluoridation efficiency by enhancing accessibility to active sites. These findings substantiate the significant potential of Al/Y-CSBC for enhanced fluoride removal from wastewater.
Collapse
Affiliation(s)
- Shushu Li
- School of Public Health, Nantong University, 9 Seyuan Road, Jiangsu, 226019, China
| | - Mingshan Song
- School of Public Health, Nantong University, 9 Seyuan Road, Jiangsu, 226019, China
| | - Lin Tong
- School of Public Health, Nantong University, 9 Seyuan Road, Jiangsu, 226019, China
| | - Changqing Ye
- School of Public Health, Nantong University, 9 Seyuan Road, Jiangsu, 226019, China.
| | - Yuhuan Yang
- School of Public Health, Nantong University, 9 Seyuan Road, Jiangsu, 226019, China
| | - Qingwen Zhou
- School of Public Health, Nantong University, 9 Seyuan Road, Jiangsu, 226019, China
| |
Collapse
|
9
|
Gusiatin MZ, Rouhani A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7342. [PMID: 38068085 PMCID: PMC10707613 DOI: 10.3390/ma16237342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2025]
Abstract
Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.
Collapse
Affiliation(s)
- Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Abdulmannan Rouhani
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic;
| |
Collapse
|
10
|
Huang Q, Zhao J, Wang J, Yang L, Xu Y, Yu G, Bai S, Liu L. Enhancement of iron-loaded sludge biochar on Cr accumulation in Leersia hexandra swartz: Hydroponic test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119389. [PMID: 39491937 DOI: 10.1016/j.jenvman.2023.119389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/22/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
In this study, the effect of iron-loaded sludge biochar (ISBC) on the Cr enrichment capacity of Leersia hexandra swartz (L. hexandra) in hydroponic tests was investigated at different Cr treatment levels (5 mg/L, 10 mg/L and 20 mg/L). The results showed that the plant height and biomass of L. hexandra were significantly increased with the rise of ISBC dose (p < 0.01), while the Cr content in L. hexandra showed a significant downward trend (p < 0.01). However, the Cr accumulation capacity of L. hexandra was significantly increased as ISBC dose was raised (p < 0.01), which was attributed to the significant improvement of its biomass. According to Cr accumulation capacity, the appropriate ISBC dose was recommended to be 50 g/L for all Cr treatment levels. Compared to the control (no ISBC; 0.105 mg, 0.167 mg and 0.193 mg), the Cr accumulation capacity of L. hexandra at different Cr treatment levels were increased by 77.40%, 59.72% and 88.41%, respectively. The comparative analysis throughout the test cycle indicated that the addition of ISBC could convert more Cr(VI) to Cr(III), which was beneficial to the biomass and the Cr accumulation capacity of L. hexandra. Meanwhile, the relationship between changes in the concentrations of NH4+, PO43- and K+ and the incremental biomass of L. hexandra was well described by the Logistic model, while the relationship between changes in their concentrations and the Cr accumulation capacity of L. hexandra also followed this model well. Moreover, their effects were found throughout the test, while the contribution of Ca2+ was mainly at the beginning and end of the test. In summary, the enhancement of ISBC on Cr accumulation capacity of L. hexandra was attributed to detoxification and fertilizer supply.
Collapse
Affiliation(s)
- Qingxia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China
| | - Jinchao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lijiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
11
|
Han F, An SY, Liu L, Wang Y, Ma LQ, Yang L. Sulfoaluminate cement-modified straw biochar as a soil amendment to inhibit Pb-Cd mobility in the soil-romaine lettuce system. CHEMOSPHERE 2023; 332:138891. [PMID: 37164200 DOI: 10.1016/j.chemosphere.2023.138891] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Biochar is widely used to remediate soil polluted by potentially toxic elements (PTEs), while the effect of a new type of biochar, obtained from modified cement material, on the mobility of Pb and Cd in the soil-plant system is still unknown. In this study, soils doped with sulfoaluminate cement modified biochar (SBC) were characterized using a series of approaches including FTIR, XRD, and XPS, and combined with pot experiments to explore its synergistic effects on the speciation transformation, accumulation, and mobility of both Pb and Cd in a soil-romaine lettuce system in heavily contaminated soils containing 500 mg·kg-1-Pb and 3 mg·kg-1-Cd. The results showed that SBC effectively immobilized Pb and Cd in the soil and that this was achieved through cation exchange, complexation, and gel encapsulation. Moreover, SBC also changed the soil physicochemical properties and indirectly affected the speciation transformation of Pb and Cd. FTIR and XRD analyses revealed that the groups such as -OH, -COOH, SO42-, and SiO32-introduced by SBC stimulated the conversion from the soluble to the residual state of Pb. XPS analysis indicated that, the deviation of the C-O-C, C-OOH, and O-CO peak and the increased in area suggested that organic groups in the SBC were engaged in the immobilization mechanism of Pb and Cd. The transformation of residual Cd in other extractable fractions might be due to either enhanced soil reducibility or competitive adsorption with Pb. In 5% SBC soil, Pb was reduced by 27.69% and 64.84%, and Cd was reduced by 20.45% and 35.87% for shoots and roots of romaine lettuce, respectively. SBC showed a significantly positive correlation with SOM, while SOM showed a highly significantly negative correlation with both Pb and Cd in the roots. In summary, SBC can be strongly recommended as a green amendment to remediate Pb-Cd contaminated soil and to inhibit the mobility to plant.
Collapse
Affiliation(s)
- Feng Han
- School of Water and Environment, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects of Arid Region of the Ministry of Education, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Shu-Yu An
- School of Water and Environment, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects of Arid Region of the Ministry of Education, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Lei Liu
- School of Water and Environment, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects of Arid Region of the Ministry of Education, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Ye Wang
- School of Water and Environment, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects of Arid Region of the Ministry of Education, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Li-Qi Ma
- School of Water and Environment, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects of Arid Region of the Ministry of Education, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Liu Yang
- School of Water and Environment, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects of Arid Region of the Ministry of Education, Chang' an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
12
|
Fan Z, Zhou X, Peng Z, Wan S, Gao ZF, Deng S, Tong L, Han W, Chen X. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals. CHEMOSPHERE 2023; 317:137929. [PMID: 36682641 DOI: 10.1016/j.chemosphere.2023.137929] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) is a frequent and challenging issue for countries with big populations, due to its massive output, significant hazard potential, and challenging resource utilization. Pyrolysis can simultaneously realize the reduction, harmlessness and recycling of SS. Co-pyrolysis offers a wide range of potential in terms of increasing product quality and immobilizing heavy metals (HMs), thanks to its capacity to use additives to address the mismatch between SS characteristics and pyrolysis. High-value utilization potential of SS biochar is the key to evaluating the advancement of treatment technology. A further requirement for using biochar resources is the immobilization and bioavailability reduction of HMs. Due to the catalytic and synergistic effects in the co-pyrolysis process, co-pyrolysis SS biochar exhibits enhanced functionality and has been applied in soil improvement, pollutant adsorption and catalytic reactions. This review focuses on the research progress of different additives in improving the functionality of biochar and influencing the behavior of HMs. The key limitation and challenges in SS co-pyrolysis are then discussed. Future research prospects are detailed from seven perspectives, including pyrolysis process optimization, co-pyrolysis additive selection, catalytic mechanism research of process and product, biochar performance improvement and application field expansion, cooperative immobilization of HMs, and life cycle assessment. This review will offer recommendations and direction for future research paths, while also assist pertinent researchers in swiftly understanding the current state of SS pyrolysis research field.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Sha Wan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Luling Tong
- Wuhan Planning & Design Institute, Wuhan, 430000, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| |
Collapse
|
13
|
Zhang Q, Li J, Chen D, Xiao W, Zhao S, Ye X, Li H. In situ formation of Ca(OH) 2 coating shell to extend the longevity of zero-valent iron biochar composite derived from Fe-rich sludge for aqueous phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158794. [PMID: 36116640 DOI: 10.1016/j.scitotenv.2022.158794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Despite being an effective and attractive functional strategy for aqueous phosphorus (P) removal, the use of zero valent iron (ZVI) biochar composites has been severely impeded by rapid self-erosion. We describe a new approach for extending the lifespan of Fe-rich sludge-derived ZVI biochar composites via CaCl2 modification. Preliminary results showed that composites obtained at 900 °C without modification (MBC900) and at 900 °C with 100 g Cl/kg addition (MBC900100) had the highest P removal efficiency. In subsequent batch experiments, MBC900100 exhibited more stable P adsorption capacities than MBC900 over a wide pH range (4-10) and at various dosages, which was enhanced by the presence of HCO3-. The theoretical maximum P adsorption capacities of MBC900 and MBC900100 were 227.14 and 224.15 mg g-1, respectively. Kinetic analysis indicated that chemisorption dominated the removal process. Continuous experimental data using the Yoon-Nelson model indicated that MBC900100 had a considerably longer half-penetration time. The primary mechanism of P removal by MBC900 was Fe/C micro-electrolysis. As the embedded CaO formed a dissolvable Ca(OH)2 shell in situ on the surface of MBC900100, the phosphate formed a precipitate with free Ca2+ before being removed via micro-electrolysis. Overall, CaCl2 modification successfully enhanced the longevity of the ZVI biochar composites.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| |
Collapse
|
14
|
Zhen K, Zhu Q, Zhai S, Gao Y, Cao H, Tang X, Wang C, Li J, Tian L, Sun H. PPCPs and heavy metals from hydrothermal sewage sludge-derived biochar: migration in wheat and physiological response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83234-83246. [PMID: 35764728 DOI: 10.1007/s11356-022-21432-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Once the sludge was directly used in the farmland, it will have a negative impact on human health through the food chain because sludge contains pollutants. Sewage sludge pyrolysis into biochar is an effective way to realize sludge harmless and resourceful utilization. This research used hydrothermal carbonization method to convert sludge into sludge biochar (SLBC) to reduce the types and contents of pharmaceuticals and personal care products (PPCPs) and available heavy metals. Furthermore, migration of the residual caffeine (Caf), acetaminophen (Ace), and heavy metals (Cr, Pb, Cu, Zn) released from the SLBC in the wheat was assessed. The results showed that the levels of Caf, Ace, Pb, Cu, and Zn accumulated in the shoots were lower than the limit regulated by Drug and Food Additive Use Standard in China (Caf: 150 mg/kg; Ace: 2.5 ~ 5 mg/kg; Pb: 0.3 mg/kg; Cu: 10 mg/kg; Zn: 20 mg/kg). The migration of Cr from roots to shoots was also significantly controlled by SBLC. SBLC delayed the germination time of wheat seeds with increasing in hydrothermal temperature, the germination rate and root length showed a decreasing trend. Evans blue and O2- fluorescence staining of root tips also confirmed this conclusion. When the wheat was exposed to the low temperature and dose of SLBC, the chlorophyll contents and growth of wheat can be significantly increased; the oxidative damage of cell plasma membrane and net photosynthetic rate were reduced. However, 0.8 g/L of SLBC made plants suffer abiotic stress and caused oxidative damage to plants, and decreased membrane system stability. The study provides some parameters for sludge to realize resource utilization in the agricultural system.
Collapse
Affiliation(s)
- Kai Zhen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Sheng Zhai
- College of Geography and Environment, Liaocheng University, Liaocheng, 252000, Shandong Province, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jiao Li
- Ecology and Environment Monitoring Station in Pingluo County, Shizuishan City, 753400, Ningxia Hui Autonomous Region, China
| | - Lili Tian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Tan X, Deng Y, Shu Z, Zhang C, Ye S, Chen Q, Yang H, Yang L. Phytoremediation plants (ramie) and steel smelting wastes for calcium silicate coated-nZVI/biochar production: Environmental risk assessment and efficient As(V) removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156924. [PMID: 35779737 DOI: 10.1016/j.scitotenv.2022.156924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most common and harmful pollutants in environment throughout the world, especially in aqueous solutions. In this study, two kinds of industrial solid wastes (Oxide scale (OS) and Blast furnace slag (BFS)) and one kind of phytoremediation plant waste (Ramie stalk) were used to prepare an environmentally friendly, low-cost, and efficient calcium silicate coated nano zero-valent iron (nZVI)/biochar composite (BOS) for As(V) adsorption. The potential environmental risks of BOS and their effects on removal of arsenic ions from aqueous media were investigated. The adsorption mechanism was explored and discussed based on XRD, SEM-EDS, XPS, etc. The results suggested that the environmental risk and heavy metals toxicity in BOS by co-pyrolysis were significantly reduced compared to the original materials, and no additional contaminant was observed in the subsequent experiments. Simultaneously, the BOS showed excellent As(V) removal capacity (>99%) and regenerative properties. The As(V) removal mechanisms are mainly ascribed to the complexation and co-precipitation between Fe and As, and the hydrogen bond between CO functional group of BOS and As. The mechanism of enhanced nZVI activity for As(V) removal was revealed. A protective layer of Ca2SiO4 was formed on the surface of nZVI during the co-pyrolysis process to prevent the passivation of nZVI. During the reaction process, the Ca2SiO4 covering the nZVI surface would be continuously detached to expose the fresh surface of nZVI, thus providing more redox activity and adsorption sites. This study provides a new way to treat and recycle industrial steel solid wastes and phytoremediation plant wastes, and the produced calcium silicate coated-nZVI/biochar composite is proposed to be a very promising material for practical remediation of As(V)-contaminated water bodies.
Collapse
Affiliation(s)
- Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yuanyuan Deng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zihan Shu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lei Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|