1
|
Li S, Li Y, Xie X, Li Z, Yuan K, Chen X, Ci Z, Lin L, Hu L, Yin Y, Shi J, Luan T, Chen B. Unveiling in situ methylmercury production and degradation in aquaculture sediments: Transformation rates, functional genes and microbial methylators. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137659. [PMID: 39978200 DOI: 10.1016/j.jhazmat.2025.137659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Methylmercury (MeHg) is recognized as a deleterious neurotoxin with the traits of biomagnification through the food chain and accumulation in edible aquatic products. However, the in situ production of MeHg in aquaculture environments has not been well understood. Herein, the sediments were collected from aquaculture ponds with different rearing operations. Isotope-based tracer analysis showed that Hg methylation and MeHg demethylation rate constants in the aquaculture sediments were 0.001-0.022 d-1 and 0.11-0.40 d-1, respectively. Most of bacterial Hg methylators (> 97.0 %) in aquaculture sediments were assigned to Firmicutes and Actinobacteria phyla. Four functional genes responsible for Hg transformation (hgcAB and merAB) could be detected in the aquaculture sediments. In particular, Hg methylation rate constants were positively and significantly correlated with the levels of hgcAB genes (p < 0.05). Inhibitive reagent addition assays and correlation analysis consistently demonstrated that sulfate-reducing bacteria (SRB) were the main methylators in aquaculture sediments, and antibiotic use could fortify the resistance of Hg methylators to antibiotics. These findings suggest that the in situ production of MeHg in aquaculture sediments may be effectively reduced via inhibiting SRB activities, and both hgcAB genes are useful markers of MeHg production in aquaculture environments.
Collapse
Affiliation(s)
- Songzhang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Xin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhijia Ci
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Li Lin
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
2
|
Eom S, Kim J, Jung E, Kwon SY, Hong Y, Lee M, Park JH, Han S. Effects of hydrologic regimes on the loading and spatiotemporal variation of mercury in the microtidal river estuary. MARINE POLLUTION BULLETIN 2024; 205:116602. [PMID: 38950512 DOI: 10.1016/j.marpolbul.2024.116602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
The potential effect of hydrological conditions on distribution and loadings of Hg species was investigated in the microtidal Hyeongsan River Estuary (HRE). Dissolved Hg (DHg) and dissolved methylmercury (DMeHg) from the creek receiving industrial wastes were effectively settled to sediment during the post-typhoon period, while persistent input from the Hg-contaminated creek without settling was observed during the dry periods. The event-based mean approach was applied to explore the hydrological effects on the annual flux of Hg. The largest inputs of DHg and particulate Hg (PHg) were found in the Hg-contaminated creek, and DHg input was higher in the dry than wet periods whereas PHg input was higher in the wet than dry periods. In sediment, Hg and MeHg concentrations decreased after the typhoon, attributed to erosion of surface sediments. Overall, the HRE serves as an effective sink of Hg that reduces the degree of Hg contamination in coastal water.
Collapse
Affiliation(s)
- Sangwoo Eom
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jihee Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eunji Jung
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University, Sejong Campus, Sejong 30019, Republic of Korea
| | - Mikyung Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ji Hyoung Park
- Han River Environment Research Center, National Institute of Environment Research, Gyeonggi-do, 12585, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
3
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
4
|
Jung E, Park S, Kim H, Han S. Spatiotemporal variation in methylmercury and related water quality variables in a temperate river under highly dynamic hydrologic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173090. [PMID: 38729360 DOI: 10.1016/j.scitotenv.2024.173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The understanding of the essential environmental factors affecting the spatiotemporal variation in methylmercury (MeHg) in river water is limited to date, despite its importance for predicting the effect of ongoing climate change on MeHg accumulation in freshwater ecosystems. This study aimed to explore the variation in MeHg concentration and related environmental factors in the downstream zone of the Yeongsan River under highly dynamic hydrologic conditions by using water quality and hydrologic data collected from 1997 to 2022, and Hg and MeHg data collected from 2017 to 2022. The mean concentration of unfiltered MeHg was 35.7 ± 13.7 pg L-1 (n = 24) in summer and 26.7 ± 7.43 pg L-1 (n = 24) in fall. Dissolved oxygen (DO), conductivity, nitrate, and dissolved organic carbon (DOC) were determined to be the most influential variables in terms of MeHg variation based on the partial least squares regression model, and their effects on the MeHg concentration were negative, except for DOC. Heatmaps representing the similarity distances between temporal trends of hydrologic and water quality variables were constructed to determine fundamental factors related to the time-based variations in DO, conductivity, nitrate, and DOC using a dynamic time warping algorithm. The heatmap cluster analysis showed that the temporal trends of these variables were closely related to rainfall variation rather than irradiance or water temperature. Overall, biogeochemical factors directly related to in situ methylation rate of Hg(II)-rather than transport of Hg(II) and MeHg from external sources-mainly control the spatiotemporal variation of MeHg in the downstream zone of the Yeongsan River.
Collapse
Affiliation(s)
- Eunji Jung
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sungsook Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyunji Kim
- National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
5
|
Rahman MM, Jung E, Eom S, Lee W, Han S. Mercury concentrations in sediments and oysters in a temperate coastal zone: a comparison of farmed and wild varieties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109810-109824. [PMID: 37777705 DOI: 10.1007/s11356-023-29992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Oyster aquaculture has progressively increased to meet growing demands for seafood worldwide; however, its effects on methylmercury (MeHg) production in sediment and accumulation in oysters are largely unknown. In this study, total Hg (THg) and MeHg in sediments collected from aquaculture and reference sites and in farmed and wild oysters were measured and compared to explore potential factors that regulate MeHg production and bioaccumulation at the aquaculture sites. The results showed that the mean concentrations of THg and MeHg in varying sediment depths at the aquaculture site were 34 ± 4.1 ng g-1 and 16 ± 12 pg g-1, respectively. In comparison, the mean concentrations of THg and MeHg in sediments at the reference site were 25 ± 2.5 ng g-1 and 63 ± 28 pg g-1, respectively. While the MeHg/THg in the aquaculture sediments increased with organic carbon content, the slope of MeHg/THg versus organic carbon content was suppressed by high concentrations of dissolved sulfide in the pore water. Multiple parameters (total sulfur, total nitrogen and acid volatile sulfide in sediment, and dissolved sulfide in pore water) showed significant negative relationships with MeHg/THg in the sediment, and the total sulfur content in the sediment showed the highest inverse correlation factor with MeHg/THg (r = - 0.83). The mean concentrations of THg and MeHg in farmed oysters (mean weight 3.2 ± 1.5 g) were 36 ± 10 ng g-1 and 15 ± 6.7 ng g-1, respectively, while those in wild oysters (mean weight 0.92 ± 0.32 g) were 47 ± 9.9 ng g-1 and 15 ± 6.7 ng g-1, respectively. Concerning oysters of the same size range, THg and MeHg levels were higher in farmed oysters than in wild oysters despite the faster growth rate of farmed oysters, suggesting that the Hg content of food sources is more important than growth dilution rates in the control of Hg levels. The mean hazardous quotient for MeHg in farmed oyster was calculated as 0.044 ± 0.020, suggesting no expected health risk from farmed oyster consumption.
Collapse
Affiliation(s)
- Md Moklesur Rahman
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eunji Jung
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sangwoo Eom
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woojin Lee
- Department of Civil and Environmental Engineering, National Lab. Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Republic of Kazakhstan
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Floreani F, Barago N, Klun K, Faganeli J, Covelli S. Dissolved gaseous mercury production and sea-air gaseous exchange in impacted coastal environments of the northern Adriatic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121926. [PMID: 37268218 DOI: 10.1016/j.envpol.2023.121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
The northern Adriatic Sea is well known for mercury (Hg) contamination mainly due to historical Hg mining which took place in Idrija (Slovenia). The formation of dissolved gaseous mercury (DGM) and its subsequent volatilisation can reduce the amount of Hg available in the water column. In this work, the diurnal patterns of both DGM production and gaseous Hg fluxes at the water-air interface were seasonally evaluated in two selected environments within this area, a highly Hg-impacted, confined fish farm (VN: Val Noghera, Italy) and an open coastal zone less impacted by Hg inputs (PR: Bay of Piran, Slovenia). A floating flux chamber coupled with real-time Hg0 analyser was used for flux estimation in parallel with DGM concentrations determination through in-field incubations. Substantial DGM production was observed at VN (range = 126.0-711.3 pg L-1) driven by both strong photoreduction and possibly dark biotic reduction, resulting in higher values in spring and summer and comparable concentrations throughout both day and night. Significantly lower DGM was observed at PR (range = 21.8-183.4 pg L-1). Surprisingly, comparable Hg0 fluxes were found at the two sites (range VN = 7.43-41.17 ng m-2 h-1, PR = 0-81.49 ng m-2 h-1), likely due to enhanced gaseous exchanges at PR thanks to high water turbulence and to the strong limitation of evasion at VN by water stagnation and expected high DGM oxidation in saltwater. Slight differences between the temporal variation of DGM and fluxes indicate that Hg evasion is more controlled by factors such as water temperature and mixing conditions than DGM concentrations alone. The relative low Hg losses through volatilisation at VN (2.4-4.6% of total Hg) further confirm that static conditions in saltwater environments negatively affect the ability of this process in reducing the amount of Hg retained in the water column, therefore potentially leading to a greater availability for methylation and trophic transfer.
Collapse
Affiliation(s)
- Federico Floreani
- Department of Mathematics & Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy; Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy.
| | - Nicolò Barago
- Department of Mathematics & Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy
| | - Katja Klun
- Marine Biology Station, National Institute of Biology, Fornace 41, 6330, Piran, Slovenia
| | - Jadran Faganeli
- Marine Biology Station, National Institute of Biology, Fornace 41, 6330, Piran, Slovenia
| | - Stefano Covelli
- Department of Mathematics & Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy
| |
Collapse
|