1
|
Mei R, Zhao T, Zhang Y, Lin H, Zhao C, Lin L, Zou Y, Liu Y. Boron removal in seawater desalination by progressive freezing-melting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14123-14134. [PMID: 38267648 DOI: 10.1007/s11356-024-32097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Desalination plays a crucial role in addressing water scarcity and promoting sustainable development. However, the presence of high boron content in seawater poses a significant challenge. This study introduces a progressive freezing-melting method that effectively removes boron while desalinating seawater. The experimental results indicated that salinity and boron rate of removal increased with freezing temperature and decreased with freezing duration. Among the experimental melting methods, ultrasonic melting (UM) and oscillatory melting (OM) were superior to natural melting (NM) for boron removal and desalination, with oscillatory melting proving to be the most effective. Specifically, when seawater was frozen at - 20 °C for 44 h followed by OM of 55% of the ice, salinity and boron removal rates reached 96.79% and 97.60%, respectively. The concentrations of boron and salinity in the treated seawater were only 0.777‰ and 0.149 mg/L. Moreover, the estimated theoretical energy consumption for treating 1 m3 of seawater was calculated to be 5.95 kWh. This study not only contributes to environmental sustainability but also holds significant potential due to its high efficiency in desalination and boron removal.
Collapse
Affiliation(s)
- Rui Mei
- College of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Tongguo Zhao
- Yantai Economic and Technological Development Zone Water Supply Co., Ltd, Yantai, 264000, China
| | - Yan Zhang
- College of Civil Engineering, Yantai University, Yantai, 264005, China.
| | - Hao Lin
- College of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Chen Zhao
- College of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Lin Lin
- Shandong Qianwei Environmental Protection Equipment Co., Ltd, Weihai, 264200, China
| | - Yihong Zou
- College of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Yucan Liu
- College of Civil Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
2
|
de Azevedo JCV, de Urzedo APFM, da Luz Mesquita P, da Cunha Filho RG, Baston EP, Samanamud GL, Naves LLR, Naves FL. Recent advances in boron removal in aqueous media. An approach to the adsorption process and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12207-12228. [PMID: 38225497 DOI: 10.1007/s11356-024-31882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
The numerous oxidation states of the element boron bring great challenges in containing its contamination in receptor bodies. This scenario increases significantly due to the widespread use of boron compounds in various industries in recent years. For this reason, the removal of this contaminant is receiving worldwide attention. Although adsorption is a promising method in boron removal, finding suitable adsorbents, that is, those with high efficiency, and feasible remains a constant challenge. Hence, this review presents the boron removal methods in comparison to costs of adsorbents, reaction mechanisms, economic viability, continuous bed application, and regeneration capacity. In addition, the approach of multivariate algorithms in the solution of multiobjective problems can enable the optimized conditions of dosage of adsorbents and coagulants, pH, and initial concentration of boron. Therefore, this review sought to comprehensively and critically demonstrate strategic issues that may guide the choice of method and adsorbent or coagulant material in future research for bench and industrial scale boron removal.
Collapse
Affiliation(s)
- Jéssica Carolaine Vieira de Azevedo
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Ana Paula Fonseca Maia de Urzedo
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Patrícia da Luz Mesquita
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Roberto Guimarães da Cunha Filho
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Eduardo Prado Baston
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Gisella Lamas Samanamud
- Department of Chemical and Materials Engineering, University of Kentucky - Paducah extended campus, Paducah, KY, 42001, USA
| | - Luzia Lima Rezende Naves
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Fabiano Luiz Naves
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil.
| |
Collapse
|
3
|
Bolan S, Wijesekara H, Amarasiri D, Zhang T, Ragályi P, Brdar-Jokanović M, Rékási M, Lin JY, Padhye LP, Zhao H, Wang L, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Boron contamination and its risk management in terrestrial and aquatic environmental settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164744. [PMID: 37315601 DOI: 10.1016/j.scitotenv.2023.164744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Boron (B) is released to terrestrial and aquatic environments through both natural and anthropogenic sources. This review describes the current knowledge on B contamination in soil and aquatic environments in relation to its geogenic and anthropogenic sources, biogeochemistry, environmental and human health impacts, remediation approaches, and regulatory practices. The common naturally occurring sources of B include borosilicate minerals, volcanic eruptions, geothermal and groundwater streams, and marine water. Boron is extensively used to manufacture fiberglass, thermal-resistant borosilicate glass and porcelain, cleaning detergents, vitreous enamels, weedicides, fertilizers, and B-based steel for nuclear shields. Anthropogenic sources of B released into the environment include wastewater for irrigation, B fertilizer application, and waste from mining and processing industries. Boron is an essential element for plant nutrition and is taken up mainly as boric acid molecules. Although B deficiency in agricultural soils has been observed, B toxicity can inhibit plant growth in soils under arid and semiarid regions. High B intake by humans can be detrimental to the stomach, liver, kidneys and brain, and eventually results in death. Amelioration of soils and water sources enriched with B can be achieved by immobilization, leaching, adsorption, phytoremediation, reverse osmosis, and nanofiltration. The development of cost-effective technologies for B removal from B-rich irrigation water including electrodialysis and electrocoagulation techniques is likely to help control the predominant anthropogenic input of B to the soil. Future research initiatives for the sustainable remediation of B contamination using advanced technologies in soil and water environments are also recommended.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Dhulmy Amarasiri
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Péter Ragályi
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest 1022, Hungary
| | - Milka Brdar-Jokanović
- Department of Vegetable and Alternative Crops, Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad 21000, Republic of Serbia
| | - Márk Rékási
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest 1022, Hungary
| | - Jui-Yen Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807, Taiwan
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
4
|
Pan T, Li G, Li R, Cui X, Zhang W. Selective Removal of Boron from Aqueous Solutions Using ECH@NGM Aerogels with Excellent Hydrophilic and Mechanical Properties: Performance and Response Surface Methodology Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14879-14890. [PMID: 36399773 DOI: 10.1021/acs.langmuir.2c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The remediation of environmental boron contamination has received extensive research attention. The adsorbent ECH@NGM aerogel with high hydrophilic and mechanical properties was synthesized to remove boron. The ECH@NGM aerogel had a high adsorption capacity of 81.11 mg/g, which was 14.50% higher than that of commercial boron-selective resin Amberlite IRA743. The Freundlich model and pseudo-second-order model described the adsorption behavior well. In addition, the response surface methodology (RSM) could predict the experimental outcomes and optimize the reaction conditions, and X-ray photoelectron spectroscopy (XPS) and control tests were utilized to investigate probable adsorption mechanisms. These data showed that the B ← N coordination bond was the primary adsorption force. The adsorbent had good resistance to interference from coexisting salts, high reusability, good adsorption performance even after five reuse cycles, and a high desorption rate in a relatively short time. The adsorption performance in real brines could be maintained at 80%. Therefore, this work not only provided ECH@NGM aerogels for the removal of boron from brine but also elucidated the main adsorption processes between N-containing adsorbents and boron, facilitating the design of future adsorbents for boron removal.
Collapse
Affiliation(s)
- Tongtong Pan
- College of Chemical Engineering, Qinghai University, Xining810016, China
| | - Gan Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Rujie Li
- College of Chemical Engineering, Qinghai University, Xining810016, China
| | - Xiangmei Cui
- College of Chemical Engineering, Qinghai University, Xining810016, China
| | - Weidong Zhang
- College of Chemical Engineering, Qinghai University, Xining810016, China
| |
Collapse
|
5
|
Lan J, Wang B, Gong B. Polyethyleneimine modified activated carbon for high-efficiency adsorption of copper ion from simulated wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2465-2481. [PMID: 36378193 DOI: 10.2166/wst.2022.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, activated carbon (AC) was chemically activated using sodium hydroxide (NaOH), and polyethyleneimine (PEI) was grafted onto the AC using glutaraldehyde as a cross-linking agent. Then the modified AC was applied to treat water samples containing copper ions (Cu2+). Preparation of AC-NaOH@PEI. The grafted AC was characterized, demonstrating that the specific surface area of material decreased from 959.3 to 556.9 m2/g. The ζ-potential changed from -27.2 to 10.4 mV, and the presence of a distinct flocculation on the surface of the AC was observed via scanning electron microscopy. The results demonstrated that PEI was successfully grafted onto the surface of AC. Furthermore, the adsorption results indicated that the Cu2+ adsorption capacity of AC-NaOH@PEI was greatly enhanced with increasing PEI loading. The adsorption amount of Cu2+ by the grafted AC-NaOH@PEI-200 increased from 20.02 to 47.8 mg/g. In addition, the adsorption of Cu2+ by AC-NaOH@PEI was a pH dependent process. At a pH of 6, the maximum removal rate reached 93%. The adsorption process is better described by the Langmuir and quasi-second order adsorption models, signifying that the adsorption of Cu2+ on AC@PEI consists of monolayer adsorption and chemisorption. After four adsorption-desorption cycles, AC@PEI exhibited high adsorption capacity for Cu2+, indicating that it has good regeneration ability. It is a promising adsorbent material.
Collapse
Affiliation(s)
- Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China E-mail:
| | - Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China E-mail:
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China E-mail:
| |
Collapse
|