1
|
Tuncay G, Yuksekdag A, Mutlu BK, Koyuncu I. A review of greener approaches for rare earth elements recovery from mineral wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124379. [PMID: 38885830 DOI: 10.1016/j.envpol.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
The use of rare earth elements (REE) in many various fields, including high-tech products, increases the demand for these materials day by day. The production of REE from primary sources has expanded in response to increasing demand; however, due to its limited, a more sustainable supply is also started to offer for the REE demand by using secondary sources. The most commonly used metallurgical method for REE recovery is hydrometallurgical processes. However, it has some disadvantages, like pyrometallurgical methods. In the review, studies of the environmental impacts of REE production from primary sources and life cycle assessments of products containing REE were investigated. According to the results, it has been seen that those studies in the literature in which hydrometallurgical methods have changed to more environmentally friendly approaches have begun to increase. In this review, mine wastes, which are secondary sources, were defined, conventional methods of recovery of rare earth elements were discussed, greener approaches to the recovery of REE from these sources were comprehensively examined and studies in the literature were evaluated. Furthermore, it was stated that there are limited studies on green approaches and REE recovery from mineral wastes and that this field is developing with an emphasis on the current outlook and future perspectives.
Collapse
Affiliation(s)
- Gizem Tuncay
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK) - Rare Earth Elements Research Institute (NATEN), Kahramankazan, 06980, Ankara, Turkey
| | - Ayse Yuksekdag
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Borte Kose Mutlu
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey.
| |
Collapse
|
2
|
Fekete-Kertész I, Márton R, Molnár M, Berkl Z, Hedwig S, Feigl V. Industrial ecotoxicology in focus: The unexplored environmental impacts of pilot-scale advanced filtration in Sc recovery. Heliyon 2024; 10:e33799. [PMID: 39027489 PMCID: PMC11255500 DOI: 10.1016/j.heliyon.2024.e33799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The demand within the European Union (EU) for the crucial raw material Scandium (Sc), coupled with the lack of sufficient recovery strategies, has gravitated research into exploiting alternative secondary sources. Utilizing residues from ore-production processes has proven to be a successful attempt for advanced Sc recovery. Despite the emergence of new technologies for Sc recovery from such residues, the potential environmental impacts of byproducts and technology wastes are often disregarded. Our study aimed to assess the environmental efficiency of a pilot-scale Sc recovery technology that relies solely on filtration. We employed a problem-specific ecotoxicity toolkit based on the approach of Direct Toxicity Assessment (DTA). The results of DTA provide an indication of the scale of the adverse effect of (contaminated) samples without the necessity of translating the results into chemical concentration. Standardized test methods (Aliivibrio fischeri bioluminescence inhibition, Daphnia magna lethality and Sinapis al b a root and shoot elongation inhibition) were applied, supplemented by a bioconcentration assessment with the D. magna bioaccumulation test method to gain insight on the bioaccumulation potential of different metals in the case of all samples from the filtration technology. Comprehensive genotoxicity evaluations were also implemented using three distinct test methods (Ames test, Ames MPF test, SOS Chromotest). We conducted a comparative direct toxicity assessment to anticipate the potential environmental impacts of residues generated at each filtration step on the aquatic ecosystem. Our findings indicate that the environmental impact of the generated intermediate and final residues was alleviated by the consecutive filtration steps employed. The pilot-scale application of the Sc recovery technology achieved a high and statistically significant reduction in toxicity according to each test organism during the filtration processes. Specifically, toxicity decreased by 73 %, 86 % and 87 % according to the Aliivibrio fischeri bioluminescence inhibition assay, the Sinapis alba shoot elongation inhibition test, and the Daphnia magna lethality test, respectively. The toolbox of industrial ecotoxicology is recommended to predict the environmental performance of metal recovery technologies related to potential ecosystem effects.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Rita Márton
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Sebastian Hedwig
- Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, 4132, Muttenz, Switzerland
| | - Viktória Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| |
Collapse
|
3
|
Romal JRA, Ong SK. Opportunity for a greener recovery of dysprosium(III) from secondary sources by a novel Mannich reaction-modified phosphorylated chitosan hydrogel. Int J Biol Macromol 2024; 267:131449. [PMID: 38599422 DOI: 10.1016/j.ijbiomac.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The depleting supply of natural sources of rare earth elements (REE) is a concern to many nations as demand for advanced technology is becoming vital for national security. In this communication, the recovery of dysprosium(III) from aqueous systems was exemplified by a modified phosphorylated chitosan (PCs/MB) prepared by the C-Mannich reaction of phosphorylated chitosan, glutaraldehyde, and 4-hydroxycoumarin in ethanolic solution. Batch adsorption studies achieved a maximum adsorption capacity (qmax) of 34 mg/g at 25 °C and pH = 5.4 for 2 h. Fourier Transform-Infrared Spectroscopy, elemental mapping, and quantitative analyses revealed ion-exchange mechanism with C6-phosphate and a synergistic complexation with the amino group between two hexose units of the chitosan chain confirming the correlation provided by the pseudo-second order kinetics (R2 = 0.9996), extrapolated mean free energy of adsorption (Eads) of 12.9 kJ/mol from the corrected Dubinin-Radushkevich isotherm, and the extrapolated enthalpy of adsorption (ΔH0ads) of -42.4 kJ/mol from the linearized Van't Hoff plot. Competitive adsorption with iron(II), cerium(III), and neodymium(III) demonstrated preferential removal of dysprosium(III) and complete exclusion of iron(II), which illustrates potential application in the separation of REE from electronic wastes.
Collapse
Affiliation(s)
- John Rey Apostol Romal
- Department of Chemistry and Physics, Grand View University, Des Moines, IA 50316, USA; Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Kaczorowska MA. The Latest Achievements of Liquid Membranes for Rare Earth Elements Recovery from Aqueous Solutions-A Mini Review. MEMBRANES 2023; 13:839. [PMID: 37888011 PMCID: PMC10608305 DOI: 10.3390/membranes13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The systematic increase in the use of rare earth elements (REEs) in various technologically advanced products around the world (e.g., in electronic devices), the growing amount of waste generated by the use of high-tech materials, and the limited resources of naturally occurring REE ores resulted in an intensive search for effective and environmentally safe methods for recovering these elements. Among these methods, techniques based on the application of various types of liquid membranes (LMs) play an important role, primarily due to their high efficiency, the simplicity of membrane formation and use, the utilization of only small amounts of environmentally hazardous reagents, and the possibility of simultaneous extraction and back-extraction and reusing the membranes after regeneration. However, because both primary and secondary sources (e.g., waste) of REEs are usually complex and contain a wide variety of components, and the selectivity and efficiency of LMs depend on many factors (e.g., the composition and form of the membrane, nature of the recovered ions, composition of the feed and stripping phases, etc.), new membranes are being developed that are "tailored" to the properties of the recovered rare earth elements and to the character of the solution in which they occur. This review describes the latest achievements (since 2019) related to the recovery of a range of REEs with the use of various liquid membranes (supported liquid membranes (SLMs), emulsion liquid membranes (ELMs), and polymer inclusion membranes (PIMs)), with particular emphasis on methods that fall within the trend of eco-friendly solutions.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, PL 85326 Bydgoszcz, Poland
| |
Collapse
|
5
|
Avdibegović D, Barbier E, Jaklič B, Škapin SD, Spreitzer M, Binnemans K. Removal of copper and iron from ethanolic solutions by an anion exchange resin and its implication to rare-earth magnet recycling. CHEMOSPHERE 2023; 330:138603. [PMID: 37028714 DOI: 10.1016/j.chemosphere.2023.138603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
In the recycling of end-of-life rare-earth magnets, the recovery of non-rare earth constituents is often neglected. In the present study, strong cation and anion exchange resins were tested batchwise for the recovery of the non-rare-earth constituents of permanent magnets (copper, cobalt, manganese, nickel and iron) from synthetic aqueous and ethanolic solutions. The cation exchange resin recovered most of metal ions from aqueous and ethanolic feeds, whereas the anion exchange resin could selectively recover copper and iron from ethanolic feeds. The highest uptake of iron and copper was found for 80 vol% and 95 vol% multi-element ethanolic feeds, respectively. A similar trend in selectivity of the anion resin was observed in breakthrough curve studies. Batch experiments, UV-Vis, FT-IR and XPS studies were performed to elucidate the ion exchange mechanism. The studies indicate that the formation of chloro complexes of copper and their exchange by the (hydrogen) sulfate counter ions of the resin have an important role in the selective uptake of copper from the 95 vol% ethanolic feed. Iron(II) was largely oxidized to iron(III) in ethanolic solutions and was expected to be recovered by the resin in the form of iron(II) and iron(III) complexes. The moisture content of the resin did not have a significant role on the selectivity for copper and iron.
Collapse
Affiliation(s)
- Dženita Avdibegović
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F - box 2404, B-3001 Heverlee, Belgium.
| | - Elke Barbier
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F - box 2404, B-3001 Heverlee, Belgium
| | - Blaž Jaklič
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | | | - Matjaž Spreitzer
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Koen Binnemans
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F - box 2404, B-3001 Heverlee, Belgium
| |
Collapse
|
6
|
Bolis K, Silva Goulart G, Krohling AC, Mendonça R, Fernandez-Outon LE, Domingos Ardisson J. Structural and Magnetic Characterization of Nd-Pr-Fe-B Sintered Magnet Machining Wastes. ACS OMEGA 2023; 8:12246-12258. [PMID: 37033833 PMCID: PMC10077457 DOI: 10.1021/acsomega.2c08249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Nd-Pr-Fe-B sintered magnets are considered important for emerging technologies. They are fundamental to the energy matrix transition, such as electric and hybrid vehicles and wind turbines. The production of these magnets generates tons of residues in the machining process step. Since China dominates the rare-earth (RE) market, leading to supply shortages, processing wastes are a promising alternative for recycling or reusing RE materials. Due to the amount generated and the chemical composition, containing up to 30 wt % of critical rare-earth elements, the studies of RE magnets are expanding in the current circular economy scenario. In this work, Nd-Pr-Fe-B machining wastes from two different machining processes (diamond cutting and grinding) were characterized by X-ray diffraction, Mössbauer spectroscopy, vibrating sample magnetometer with first-order-reversal-curves, scanning electron microscopy, X-ray fluorescence, elemental analysis, and X-ray photoelectron spectroscopy. The results showed that the degradation of the phases in both wastes is relatively strong. The phases of the magnets are decomposed into oxides, hydroxides, and hydrated oxides such as Nd(OH)3, ferrihydrite, and metallic iron. In addition, the machining process provokes a change in the iron vicinity of the Nd2Fe14B phase. The presence of impurities and the wide dispersion of particle sizes resulted in low magnetic properties and affected the magnetization behavior of the machining waste. Using different characterization techniques, it was found that the oxides formed during the machining processes are located on the surfaces of the particles, while the center consists of a nondegraded Nd2Fe14B phase. It was also found that the Nd-Pr-Fe-B wastes have similarities, indicating that it is possible to mix wastes from different machining processes before recycling. The complete characterization of the Nd-Pr-Fe-B machining residues indicated that different reuse and recycling strategies can be evaluated to improve the efficiency of reusing these machining wastes as secondary sources.
Collapse
Affiliation(s)
- Karen Bolis
- Nuclear
Technology Development Center, CDTN, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Laboratory-Factory
of Rare Earth Alloys and Magnets (LabFabITR), Lagoa Santa 33400-000, Minas Gerais, Brazil
| | - Gabriela Silva Goulart
- Nuclear
Technology Development Center, CDTN, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Renato Mendonça
- Nuclear
Technology Development Center, CDTN, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - José Domingos Ardisson
- Nuclear
Technology Development Center, CDTN, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
7
|
Salfate G, Sánchez J. Rare Earth Elements Uptake by Synthetic Polymeric and Cellulose-Based Materials: A Review. Polymers (Basel) 2022; 14:4786. [PMID: 36365775 PMCID: PMC9654408 DOI: 10.3390/polym14214786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Contemporary industrial processes and the application of new technologies have increased the demand for rare earth elements (REEs). REEs are critical components for many applications related to semiconductors, luminescent molecules, catalysts, batteries, and so forth. REEs refer to a group of 17 elements that have similar chemical properties. REE mining has increased considerably in the last decade and is starting an REE supply crisis. Recently, the viability of secondary REE sources, such as mining wastewaters and acid mine drainage (AMD), has been considered. A strategy to recover REEs from secondary water-related sources is through the usage of adsorbents and ion exchange materials in preconcentration steps due to their presence in low concentrations. In the search for more sustainable processes, the evaluation of synthetic polymers and natural source materials, such as cellulose-based materials, for REE capture from secondary sources should be considered. In this review, the chemistry, sources, extraction, uses, and environmental impact of REEs are briefly described to finally focus on the study of different adsorption/ion exchange materials and their performance in capturing REEs from water sources, moving from commercially available ion exchange resins to cellulose-based materials.
Collapse
Affiliation(s)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
8
|
Evaluation of scandium sorption using modified Amberlite XAD-4 resin. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|