1
|
Jie C, Zhang H, Zhou Z, Miao Z, Han B, Guo B, Guo Y, Hu X, Iqbal S, Wei B, Huang J, Dai P, An J. Flupyradifurone Exhibits Greater Toxicity to the Asian Bumblebee Bombus lantschouensis Compared to the European Bumblebee Bombus terrestris. INSECTS 2025; 16:455. [PMID: 40429168 PMCID: PMC12112515 DOI: 10.3390/insects16050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Pesticides are considered a major factor in the decline of bee populations. Flupyradifurone, a novel insecticide, is believed to be relatively 'bee-safe'. This study aims to evaluate the acute and chronic toxicity of flupyradifurone and assess its risks to both commercial bumblebee Bombus terrestris and the Asian native species B. lantschouensis. Oral toxicity tests demonstrated species-specific sensitivity, with B. lantschouensis exhibiting 5.4-fold higher acute toxicity (72-h LD50: 5.1 μg/bee vs. 28 μg/bee) and 3-fold lower chronic toxicity (No Observed Adverse Effect Concentration, NOAEC: 20 μg/mL vs. 60 μg/mL) compared to B. terrestris. Risk assessments indicated low Hazard Quotients (HQ) of 4 for B. terrestris and 20 for B. lantschouensis. However, the Exposure Toxicity Ratio (ETR) values from both screening and first-tier assessments exceeded the trigger levels, necessitating further testing. This study provides crucial data on the acute and chronic toxic effects of flupyradifurone and highlights the need for more comprehensive insecticide risk assessments, particularly for non-Apis pollinators, to better protect these vital species.
Collapse
Affiliation(s)
- Chunting Jie
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Hong Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Ziyu Zhou
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Zhengying Miao
- Gansu Provincial Beekeeping Technology Extension Station, Tianshui 741022, China;
| | - Bo Han
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Baodi Guo
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Yi Guo
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Xiao Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Shahid Iqbal
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Bingshuai Wei
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| | - Jiandong An
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.J.); (Z.Z.); (B.H.); (B.G.); (Y.G.); (X.H.); (S.I.); (B.W.); (J.H.); (P.D.)
| |
Collapse
|
2
|
Góngora-Gamboa C, Ruiz-Sánchez E, Zamora-Bustillos R, Hernández-Núñez E, Ballina-Gómez H. Lethal and sublethal effects of flupyradifurone and cyantraniliprole on two neotropical stingless bee species. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:456-466. [PMID: 39777609 DOI: 10.1007/s10646-024-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Stingless bees are important pollinators in tropical regions, but their survival and behavior have been impacted by various factors, including exposure to insecticides. Here, we evaluated the lethal and sublethal effects of commercial formulations of two widely used insecticides, flupyradifurone (FPF formulation), and cyantraniliprole (CY formulation), on Melipona beecheii and Nannotrigona perilampoides. The study involved oral exposure of bees to insecticides, calculation of the lethal concentration (LC50) and the lethal time (LT50), and evaluation of walking and flight take-off activities. The LC50 values showed that the largest bee, M. beecheii, was more sensitive than N. perilampoides to both insecticides and that the FPF formulation had faster lethal effects in both species (N. perilampoides, 9.6 h; M. beecheii, 5 h) compared to the effects of the CY formulation (N. perilampoides, 17 h; M. beecheii, 24.7 h). Sublethal concentrations (LC50/10 and LC50/100) of both insecticides affected walking and flight take-off activities. After 6-24 h of exposure, both FPF and CY formulations significantly reduced the mean walking speed of N. perilampoides (0.962-1.402 cm/s) and M. beecheii (2.026-2.589 cm/s) compared to the control groups (N. perilampoides: 1.648-1.941 cm/s; M. beecheii: 2.759-3.471 cm/s). Additionally, the FPF and the CY formulation impaired individual flight take-off in both species. This study provides the first comprehensive evaluation of the lethal and sublethal effects of flupyradifurone and cyantraniliprole on M. beecheii and N. perilampoides, offering valuable information for future research on insecticide toxicity in stingless bees.
Collapse
Affiliation(s)
| | - Esaú Ruiz-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico.
| | | | - Emanuel Hernández-Núñez
- Departamento de Posgrado e Investigación, Instituto Tecnológico Superior de Calkiní, Calkiní, Campeche, Mexico
| | - Horacio Ballina-Gómez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico
| |
Collapse
|
3
|
Purdy JR, Solomon KR, Kramer VJ, Giesy JP. Acute and repeated exposure toxicity of the insecticide sulfoxaflor on hymenopteran pollinators; sulfoxaflor environmental science review part III. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:322-349. [PMID: 40145131 DOI: 10.1080/10937404.2025.2478969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
To support regulatory risk assessment, standardized laboratory tests of toxicity to representative species including honeybees (Apis mellifera L.), orchard bees (Osmia spp.), and bumblebees (Bombus spp.) provide the benchmark toxicity values for use in preliminary Tier 1 assessments and more detailed and realistic higher-tier assessments. In this analysis, we summarize the results of studies of toxicity of SFX to pollinators conducted by the registrant as well as results published in the literature. The geometric mean of 48-hr adult acute oral LD50 values for SFX for honeybees was 0.0740 μg SFX bee-1 (n = 5). Toxicity values for technical grade SFX (SFX-T) and formulated products were not significantly different. The geometric mean 48 hr adult acute contact LD50 values for SFX-T and several formulated products were 0.432 (n = 2) and 0.202 (n = 3) μg SFX bee-1, respectively. Exposures sprayed foliage was not significant after the spray had dried did not cause significant toxicity. Transformation products were not significantly toxic to adult or larval honeybees or other representative bee species. Results showed that, to complete the risk assessment, higher-tier studies were required. Differences in results between standard test methods and the nonstandard methods used in published work affect the outcome of the risk assessment. An understanding of these differences reconciled the differences in the reported findings.
Collapse
Affiliation(s)
- J R Purdy
- Abacus Consulting Services Ltd, Campbellville, ON, Canada
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - V J Kramer
- Corteva Agriscience, Indianapolis, IN, USA
| | - J P Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Program Faculty, Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Zhang Y, Peng Z, Luo P, Zhu L, He Q, Pei C, Yin D, Zhang W, Zhang S, Cai Z. Diamide insecticides in PM 2.5: The unreported rural and urban air pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137055. [PMID: 39754883 DOI: 10.1016/j.jhazmat.2024.137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM2.5) and associated health risks have not been studied. We reported for the first time the extensive distributions of PM2.5-bound DAIs in rural and urban areas of China, one of the world's largest agricultural countries. Eight DAIs were analyzed, and five were consistently detected in PM2.5 samples at concentrations primarily of pg m-3 level. Evident spatial/temporal variations were observed, with generally more serious DAIs' contamination and long-term health risks in rural areas during spring, summer and autumn. The first exploration of DAIs' toxicities on human bronchial epithelial cells discovered their capability of inhibiting cell viabilities, further demonstrating the potential detrimental effects of these emerging pollutants in PM2.5. This study confirms the widespread appearance of DAIs in PM2.5, emphasizing the need and urgency for concern about their pollution in both rural and urban air.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, PR China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong.
| | - Zifang Peng
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Peiru Luo
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong
| | - Qingyun He
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Congcong Pei
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
5
|
Orr SE, Xu J, Juneau WC, Goodisman MAD. Bumblebees prefer sulfoxaflor-contaminated food and show caste-specific differences in sulfoxaflor sensitivity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:232-239. [PMID: 39887265 DOI: 10.1093/etojnl/vgae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 02/01/2025]
Abstract
More than 30% of human food crop yield requires animal pollination. In addition, successful crop production depends on agrochemicals to control pests. However, agrochemicals can have negative consequences on beneficial insect pollinators, such as bees. We investigated the effects of an emerging class of pesticides, sulfoximines, on the common eastern bumblebee, Bombus impatiens. We performed a series of 96-hour toxicity tests on microcolonies of laboratory-reared B. impatiens. Our data showed that sulfoxaflor (SFX) is significantly less toxic to B. impatiens than historically used neonicotinoid pesticides, such as thiamethoxam. Further, for the first time, we found significant differences among castes in sensitivity to SFX; workers and drones were more sensitive than queens. These findings are notable because they reveal both caste and sex-specific differences in bumblebee sensitivity to pesticides. Interestingly, we found no evidence that bumblebees avoid SFX-contaminated sugar syrup. To the contrary, B. impatiens workers had an apparent preference for SFX-contaminated sugar syrup over sugar syrup alone. Overall, our investigation provides novel information on an important pesticide and may help inform regulatory decisions regarding pesticide use.
Collapse
Affiliation(s)
- Sarah E Orr
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Jixiang Xu
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Wanvimol C Juneau
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| | - Michael A D Goodisman
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, United States
| |
Collapse
|
6
|
Rostán V, Wilson PC, Wilson SB, van Santen E. Influence of Pesticide Application Method, Timing, and Rate on Contamination of Nectar with Systemic and Nonsystemic Pesticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2616-2627. [PMID: 39291915 DOI: 10.1002/etc.5989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024]
Abstract
Exposure to pesticides is one potential factor contributing to the recent loss of pollinators and pollinator diversity. Few studies have specifically focused on the relationship between pesticide management during ornamental plant production and contamination of nectar. We evaluated contamination of nectar in Salvia 'Indigo Spires' (Salvia longispicata M. Martens & Galeotti × S. farinacea Benth.) associated with applications of the systemic insecticide thiamethoxam, and the nonsystemic fungicides boscalid and pyraclostrobin. Applications were made at the labeled rates for the commercially available products, and we compared the influence of application method (drench vs. spray), timing (relative to flowering), and rate (low vs. high) for each pesticide. Nectar was sampled using 50-µL microcapillary tubes and analyzed by liquid chromatography-tandem mass spectrometry. The results indicate that concentrations from the spray application resulted in the least contamination of nectar with the systemic thiamethoxam, with lower concentrations occurring when thiamethoxam was applied before blooming at the lowest rate. Concentrations of thiamethoxam and its metabolite clothianidin were detected in nectar in all treatments (regardless of the method, timing, or rate of application), and ranged from 3.6 ± 0.5 ng/mL (spray-applied before blooming, low rate) to 1720.0 ± 80.9 ng/mL (drench-applied after blooming, high rate). Residues of clothianidin in nectar ranged from below quantification limits (spray-applied before blooming, low rate) to 81.2 ± 4.6 ng/mL (drench-applied after blooming, high rate). Drench applications resulted in the highest levels of nectar contamination with thiamethoxam, and exceeded published median lethal concentrations (LC50s/median lethal doses for native bees and/or honeybees in all cases). Spray treatments resulted in nectar concentrations exceeding published LC50s for some bee species. In comparison, all nonsystemic treatments resulted in concentrations much lower than the published no-observable-effect doses and sublethal toxicity values, indicating low risks of toxicity. Environ Toxicol Chem 2024;43:2616-2627. © 2024 SETAC.
Collapse
Affiliation(s)
- Vanesa Rostán
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Patrick C Wilson
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Sandra B Wilson
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Edzard van Santen
- Statistical Consulting Unit, Institute for Food and Agricultural Sciences and Agronomy Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Cartereau A, Bouchouireb Z, Kaaki S, Héricourt F, Taillebois E, Le Questel JY, Thany SH. Pharmacology and molecular modeling studies of sulfoxaflor, flupyradifurone and neonicotinoids on the human neuronal α7 nicotinic acetylcholine receptor. Toxicol Appl Pharmacol 2024; 492:117123. [PMID: 39393466 DOI: 10.1016/j.taap.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
We conducted electrophysiological and molecular docking studies using a heterologous expression system (Xenopus oocytes) to compare the effects of four neonicotinoids (acetamiprid, imidacloprid, clothianidin and thiamethoxam), one sulfoximine, (sulfoxaflor), and one butenolide (flupyradifurone), on human α7 neuronal nicotinic acetylcholine receptors (nAChRs). All neonicotinoids (except thiamethoxam), as well as the recently introduced nAChR competitive modulators, flupyradifurone and sulfoxaflor, appear to be weaker agonists than acetylcholine. Two mutations in loop C (E211N and E211P) and one mutation in loop D (Q79K), known to be involved in the binding properties of neonicotinoids were introduced to the α7 wild type. Interestingly, the acetylcholine and nicotine-evoked activation was not modified in human α7 mutated receptors, but the net charge was enhanced for clothianidin and imidacloprid, respectively. Flupyradifurone responses strongly increased under the Q79K mutation. The molecular docking investigations demonstrated that the orientations and interactions of the ligands considered were in accordance with those observed experimentally. Specifically, the charged fragments of acetylcholine and nicotine, used as reference ligands, and their neonicotinoid homologs were found to be surrounded by aromatic residues, with key interactions with Trp171 and Y210. Furthermore, the molecular docking investigations predicted the water-mediated interaction between the carbonyl oxygen of acetylcholine and the Nsp2 nitrogen of the pyridine ring for nicotine (as well as for the majority of the corresponding neonicotinoid fragments) and main chain NH of L141. The docking scores, extending over a significant range of 6 kcal/mol, showed that most neonicotinoids were poorly stabilized in the α7 nAChR compared to acetylcholine, except sulfoxaflor.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Sara Kaaki
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - François Héricourt
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - Emiliane Taillebois
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Steeve H Thany
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
8
|
Catania R, Bonforte M, Negrini Ferreira LM, Martins GF, Pereira Lima MA, Ricupero M, Zappalà L, Mazzeo G. Insecticides used for controlling cotton mealybug pose a threat to non-target bumble bees. CHEMOSPHERE 2024; 368:143742. [PMID: 39542376 DOI: 10.1016/j.chemosphere.2024.143742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Bumble bees (Bombus spp., Hymenoptera, Apidae) play a crucial role in pollinating greenhouse tomato crops. However, tomato production is constantly threatened by different invasive pests that often lead to the increased use of pesticides, with negative consequences for pollinators. The cotton mealybug Phenacoccus solenopsis has recently been reported in Mediterranean tomatoes and its chemical control raises concerns also regarding bumble bees. In the laboratory, we evaluated the acute toxicity and sublethal effects in B. terrestris workers exposed to the diet contaminated with four insecticides (acetamiprid, pyriproxyfen, sulfoxaflor, and thiamethoxam), potentially used to control P. solenopsis. Sulfoxaflor and thiamethoxam significantly reduced the survival of B. terrestris, while acetamiprid and pyriproxyfen altered its feeding behaviour, and the bumble bees were unable to detect the contaminated solution. Moreover, neurotoxic symptoms were observed in bees exposed to acetamiprid and alterations of the midgut were detected in bees exposed to both acetamiprid and pyriproxyfen. These results show that insecticides with low levels of toxicity to bumble bees (e.g. acetamiprid and pyriproxyfen), can cause sublethal effects on them, increasing concern about the use of these substances. Our findings provide valuable insights as regards optimizing bumble bee pollination services with chemical pest control within the context of Integrated Pest and Pollinator Management.
Collapse
Affiliation(s)
- Roberto Catania
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil; Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Marta Bonforte
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Lívia Maria Negrini Ferreira
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria Augusta Pereira Lima
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy; Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Michele Ricupero
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Lucia Zappalà
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| | - Gaetana Mazzeo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania. Via S. Sofia 100 - 95123 Catania, Italy
| |
Collapse
|
9
|
Linguadoca A, Morrison MA, Menaballi L, Šima P, Brown MJF. No impact of cyantraniliprole on the hibernation success of bumble bees ( Bombus terrestris audax) in a soil-mediated laboratory exposure study. Ecol Evol 2024; 14:e70328. [PMID: 39360125 PMCID: PMC11445450 DOI: 10.1002/ece3.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Increasing evidence shows that wild bees, including bumble bees, are in decline due to a range of stressors, including pesticides. Our knowledge of pesticide impacts has consequently grown to enable the design of increasingly realistic risk assessment methods. However, one area where knowledge gaps may still hinder our ability to assess the full range of bee-pesticide interactions is the field of exposure. Exposure has historically been linked to either direct contact with pesticides or the ingestion of contaminated pollen and nectar by bees. However, bumble bees, and other wild bees, may also be exposed to pesticides while using contaminated soil as an overwintering substrate. Yet knowledge of how soil-mediated exposure affects bumble bee health is lacking. Here we take one of the first steps towards addressing this knowledge gap by designing a method for testing the effects of soil-mediated pesticide exposure on bumble bee queen hibernation success. We measured hibernation survival, body weight change and abdominal fat content and found that none of these responses were affected by a field realistic soil exposure to the novel insecticide cyantraniliprole. Our study may help in developing a standardised method to test the effects of the soil-mediated pesticide exposure route in bumble bee queens.
Collapse
Affiliation(s)
- Alberto Linguadoca
- Department of Biological Sciences Royal Holloway University of London Egham UK
- Environment, Plants & Ecotoxicology Unit, European Food Safety Authority (EFSA) Parma Italy
| | - Morgan A Morrison
- Department of Biological Sciences Royal Holloway University of London Egham UK
| | - Luca Menaballi
- International Centre for Pesticides and Health Risk Prevention L. Sacco University Hospital Milan Italy
| | | | - Mark J F Brown
- Department of Biological Sciences Royal Holloway University of London Egham UK
| |
Collapse
|
10
|
Krüger J, Buchholz S, Schmitt S, Blankenhaus K, Pernat N, Ott D, Hollens‐Kuhr H. You are what you eat - The influence of polyphagic and monophagic diet on the flight performance of bees. Ecol Evol 2024; 14:e70256. [PMID: 39224153 PMCID: PMC11368496 DOI: 10.1002/ece3.70256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Movement performance of insects is an important measure of physiological fitness and is likely affected by novel stressors associated with global change. Reduced fitness can lead to smaller foraging areas and thus to decreasing abundance, diversity and nutritional quality, which could weaken insect populations and contribute to global insect decline. Here, we combined two different methods: An experimental semi-field design applying treatments in outdoor flight cages and a follow-up experiment conducted in the laboratory, in which different parameters of movement performance, such as (a) velocity, (b) duration and (c) distance of an insect's flight can be quantified. We kept colonies of the bumblebee Bombus terrestris under contrasting nutritional conditions and measured treatment effects on the movement performance of individuals. Monophagously fed bumblebees showed reduced movement performance than polyphagously fed bumblebees. In particular, they stopped more frequently during flight, flew shorter distances and showed less often flight duration of 20 min. Our results suggest that nutritional deficiency due to a monophagic diet leads to reduced flight performance, which can have dramatic negative consequences for bees. Reduced flight performance may result in decreased availability of host plants, which may negatively affect stress resistance of bees and brood provisioning, facilitating extinction of insects. Although food of great nutritional value is an important compensator for the negative effects of different novel stressor, such as pesticides, it is not much known how to compensate for the effects of nutritional stress, especially in landscapes dominated by monocultures. However, our experimental approach with semi-field and laboratory components has high potential for further studies investigating the impact of different stressors on the physiological fitness of insects but also body mass, or reproductive success and to find factors that may mitigate or even overcome the negative effect of stressors on insects.
Collapse
Affiliation(s)
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| | - Sophie Schmitt
- Institute of Landscape Ecology, University of MünsterMünsterGermany
| | | | - Nadja Pernat
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| | - David Ott
- Centre for Biodiversity Monitoring and Conservation ScienceLeibniz Institute for the Analysis of Biodiversity ChangeBonnGermany
| | - Hilke Hollens‐Kuhr
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| |
Collapse
|
11
|
Chen J, Liu YJ, Wang Q, Zhang L, Yang S, Feng WJ, Shi M, Gao J, Dai PL, Wu YY. Multiple stresses induced by chronic exposure to flupyradifurone affect honey bee physiological states. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173418. [PMID: 38788938 DOI: 10.1016/j.scitotenv.2024.173418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Flupyradifurone (FPF) has been reported to have a potential risk to terrestrial and aquatic ecosystems. In the present study, the effects of chronic FPF exposure on bees were systematically investigated at the individual behavioral, tissue, cell, enzyme activity, and the gene expression levels. Chronic exposure (14 d) to FPF led to reduced survival (12 mg/L), body weight gain (4 and 12 mg/L), and food utilization efficiency (4 and 12 mg/L). Additionally, FPF exposure (12 mg/L) impaired sucrose sensitivity and memory of bees. Morphological analysis revealed significant cellular and subcellular changes in brain neurons and midgut epithelial cells, including mitochondrial damage, nuclear disintegration, and apoptosis. FPF exposure (4 and 12 mg/L) led to oxidative stress, as evidenced by increased lipid peroxidation and alterations in antioxidant enzyme activity. Notably, gene expression analysis indicated significant dysregulation of apoptosis, immune, detoxification, sucrose responsiveness and memory-related genes, suggesting the involvement of different pathways in FPF-induced toxicity. The multiple stresses and potential mechanisms described here provide a basis for determining the intrinsic toxicity of FPF.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Li Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wang-Jiang Feng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Min Shi
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
12
|
Scheibli L, Wiedenmann M, Wolf H, Stemme T, Pfeffer SE. Flupyradifurone negatively affects survival, physical condition and mobility in the two-spotted lady beetle (Adalia bipunctata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172617. [PMID: 38653409 DOI: 10.1016/j.scitotenv.2024.172617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Lady beetles play a crucial role in natural ecosystems and agricultural settings. Unfortunately, these insects and more specifically the two-spotted lady beetle (Adalia bipunctata) are currently facing a severe decline in populations due to various stressors, with pesticide exposure being a significant threat. Flupyradifurone is a relatively newly introduced insecticide and as existing research is mainly elucidating its effects on bees there remains a limited understanding of its effects on non-hymenopteran insects, including lady beetles. In this study we investigated the impact of acute orally applied flupyradifurone doses on survival and sublethal parameters such as physical condition and mobility on A. bipunctata. Our findings revealed a significant increase in mortality among individuals subjected to flupyradifurone doses of 19 ng/individual (corresponding to >1.5-2.0 ng active substance (a.s.)/mg body weight (bw). The calculated LD50 of flupyradifurone at 48 h was 2.11 ng a.s./mg bw corresponding to an amount of 26.38 ng/individual. Sublethal consequences were observable immediately after pesticide application. Even at doses as low as 2 ng/individual (corresponding to >0.0-0.5 ng a.s./mg bw), flupyradifurone induced trembling and temporary immobility in treated animals. Furthermore, pesticide intoxication led to hypoactivity, with less distance covered and a decline in straightness of locomotion. In conclusion, our study underscores the harmful effects of flupyradifurone on the two-spotted lady beetle at doses notably lower than those affecting bees. These findings stress the importance of additional research to attain a more holistic understanding of pesticide impacts not only on a broader range of non-target arthropods species, but also on various exposure routes as well as lethal and sublethal effects.
Collapse
Affiliation(s)
- Leonie Scheibli
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany.
| | | | - Harald Wolf
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany
| | - Torben Stemme
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany
| | | |
Collapse
|
13
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|
14
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
15
|
Parkinson RH, Scott J, Dorling AL, Jones H, Haslam M, McDermott-Roberts AE, Wright GA. Mouthparts of the bumblebee ( Bombus terrestris) exhibit poor acuity for the detection of pesticides in nectar. eLife 2023; 12:RP89129. [PMID: 38109195 PMCID: PMC10727498 DOI: 10.7554/elife.89129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Bees are important pollinators of agricultural crops, but their populations are at risk when pesticides are used. One of the largest risks bees face is poisoning of floral nectar and pollen by insecticides. Studies of bee detection of neonicotinoids have reported contradictory evidence about whether bees can taste these pesticides in sucrose solutions and hence avoid them. Here, we use an assay for the detection of food aversion combined with single-sensillum electrophysiology to test whether the mouthparts of the buff-tailed bumblebee (Bombus terrestris) detect the presence of pesticides in a solution that mimicked the nectar of oilseed rape (Brassica napus). Bees did not avoid consuming solutions containing concentrations of imidacloprid, thiamethoxam, clothianidin, or sulfoxaflor spanning six orders of magnitude, even when these solutions contained lethal doses. Only extremely high concentrations of the pesticides altered spiking in gustatory neurons through a slight reduction in firing rate or change in the rate of adaptation. These data provide strong evidence that bumblebees cannot detect or avoid field-relevant concentrations of pesticides using information from their mouthparts. As bees rarely contact floral nectar with other body parts, we predict that they are at high risk of unwittingly consuming pesticides in the nectar of pesticide-treated crops.
Collapse
Affiliation(s)
| | - Jennifer Scott
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Anna L Dorling
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Hannah Jones
- Department of Life Sciences, Imperial CollegeLondonUnited Kingdom
| | - Martha Haslam
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | | | | |
Collapse
|
16
|
Fischer LR, Ramesh D, Weidenmüller A. Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166097. [PMID: 37562619 DOI: 10.1016/j.scitotenv.2023.166097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The worldwide decline in pollinating insects is alarming. One of the main anthropogenic drivers is the massive use of pesticides in agriculture. Risk assessment procedures test pesticides for mortality rates of well-fed, parasite free individuals of a few non-target species. Sublethal and synergistic effects of co-occurring stressors are usually not addressed. Here, we present a simple, wildly applicable bio-essay to assess such effects. Using brood thermoregulation in bumblebee microcolonies as readout, we investigate how this collective ability is affected by long-term feeding exposure to the herbicide glyphosate (5 mg/l), the insecticide flupyradifurone (0.4 mg/l) and the combination of both, when co-occurring with the natural stressor of resource limitation. Documenting brood temperature and development in 53 microcolonies we find no significant effect of glyphosate, while flupyradifurone significantly impaired the collective ability to maintain the necessary brood temperatures, resulting in prolonged developmental times and a decrease in colony growth by over 50 %. This reduction in colony growth has the potential to significantly curtail the reproductive chances of colonies in the field. Our findings highlight the potentially devastating consequences of flupyradifurone use in agriculture even at sub-lethal doses and underline the urgent need for improved risk assessment procedures.
Collapse
Affiliation(s)
- Liliana R Fischer
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; School of Biological Sciences, University of East Anglia, UK.
| | - Divya Ramesh
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany; University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Xiao X, Haas J, Nauen R. Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115719. [PMID: 37992638 DOI: 10.1016/j.ecoenv.2023.115719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Flupyradifurone (FPF), a novel butenolide insecticide binding to nicotinic acetylcholine receptors (nAChRs), has been shown to be less acutely toxic to western honey bees (Apis mellifera) than other insecticides such as neonicotinoids sharing the same target-site. A previous study revealed that this is due to enhanced oxidative metabolism of FPF, mediated by three cytochrome P450 monooxygenases (P450s), including CYP6AQ1. Therefore, we followed a toxicogenomics approach and investigated the potential role of functional CYP6AQ1 orthologs in FPF metabolism from eight different bee species, including stingless bees (Tribe: Meliponini). We conducted a phylogenetic analysis on four stingless bee species, including Frieseomelitta varia, Heterotrigona itama, Melipona quadrifasciata and Tetragonula carbonaria to identify CYP6AQ1-like functional orthologs. Three non-Meliponini, but tropical bee species, i.e., Ammobates syriacus, Euglossa dilemma and Megalopta genalis were analyzed as well. We identified candidate P450s in all (neo)tropical species with greater than 61% and 67% predicted protein sequence identities when compared to A. mellifera CYP6AQ1 and Bombus terrestris CYP6AQ26, respectively. Heterologous expression in High Five insect cells of these functional orthologs revealed a common coumarin substrate profile and a preference for the O-debenzylation of bulkier substrates. Competition assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) with these enzymes indicated inhibition of BOMFC metabolism by increasing concentrations of FPF. Furthermore, UPLC-MS/MS analysis revealed the capacity of all CYP6AQ1-like orthologs to metabolize FPF by hydroxylation in vitro at various levels, indicating a conserved FPF detoxification potential in different (neo)tropical bee species including Meliponini. This research, employing a toxicogenomics approach, provides important insights into the potential of stingless and other tropical bee species to detoxify FPF, and highlights the significance of investigating the detoxification mechanisms of insecticides in non-Apis bee species by molecular tools to inform risk assessment and conservation efforts.
Collapse
Affiliation(s)
- Xingzhi Xiao
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany; Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany.
| |
Collapse
|
18
|
He Q, Zhang S, Yin F, Liu Q, Gao Q, Xiao J, Huang Y, Yu L, Cao H. Risk assessment of honeybee larvae exposure to pyrethroid insecticides in beebread and honey. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115591. [PMID: 37890252 DOI: 10.1016/j.ecoenv.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Honeybee is an essential pollinator to crops, evaluation to the risk assessment of honeybee larvae exposure to pesticides residue in the bee bread and honey is an important strategy to protect the bee colony due to the mixture of these two matrices is main food for 3-day-old honeybee larvae. In this study, a continuous survey to the residue of five pyrethroid insecticides in bee bread and honey between 2018 and 2020 from 17 major cultivation provinces which can be determined as Northeast, Northwest, Eastern, Central, Southwest, and Southern of China, there was at least one type II pyrethroid insecticide was detected in 54.7 % of the bee bread samples and 43.4 % of the honey. Then, we assayed the acute toxicity of type II pyrethroid insecticides based on the detection results, the LD50 value was 0.2201 μg/larva (beta-cyhalothrin), 0.4507 μg/larva (bifenthrin), 2.0840 μg/larva (fenvalerate), 0.0530 μg/larva (deltamethrin), and 0.1640 μg/larva (beta-cypermethrin), respectively. Finally, the hazard quotient was calculated as larval oral ranged from 0.046 × 10-3 to 2.128 × 10-3. Together, these empirical findings provide further insight into the accurate contamination of honey bee colonies caused by chemical pesticides, which can be used as a valuable guidance for the beekeeping industry and pesticide regulation.
Collapse
Affiliation(s)
- Qibao He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shiyu Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Fang Yin
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Qiongqiong Liu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Scheibli L, Elsenhans T, Wolf H, Stemme T, Pfeffer SE. Influence of the pesticide flupyradifurone on mobility and physical condition of larval green lacewings. Sci Rep 2023; 13:19804. [PMID: 37957276 PMCID: PMC10643709 DOI: 10.1038/s41598-023-46135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Global pesticide use in agriculture is one reason for the rapid insect decline in recent years. The relatively new pesticide flupyradifurone is neurotoxic to pest insects but considered harmless to bees according to previous risk assessments. With this study, we aim to investigate lethal and sublethal effects of flupyradifurone on larvae of the beneficial arthropod Chrysoperla carnea. We treated the animals orally with field-realistic concentrations of flupyradifurone and examined lethality as well as effects on condition, mobility and locomotion. For the lethal dose 50, we determined a value of > 120-200 ng/mg (corresponding to a mean amount of 219 ng/larva) after 168 h. Abnormal behaviors such as trembling and comatose larvae were observed even at the lowest concentration applied (> 0-20 ng/mg, 59 ng/larva). Mobility analysis showed impaired activity patterns, resulting in acute hypoactivity at all pesticide concentrations and time-delayed hyperactivity in larvae treated with > 40-60 ng/mg (100 ng/larva) and > 80-100 ng/mg (120 ng/larva), respectively. Even locomotion as a fundamental behavioral task was negatively influenced throughout larval development. In conclusion, our results demonstrate that flupyradifurone impacts life and survival of lacewing larvae and may pose-despite its status as bee-friendly-a major threat to insect fauna and environment.
Collapse
Affiliation(s)
- Leonie Scheibli
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tabita Elsenhans
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | |
Collapse
|
20
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
21
|
Thompson HM, Cione A, Paniago M, Artal M, Veiga JS, Oliveira A, Mareca V. Dust abraded from thiamethoxam-treated seed during sowing: Refining the risk assessment for native bees in Brazil. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1361-1373. [PMID: 36606547 DOI: 10.1002/ieam.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
During sowing using pneumatic machinery, dust may be abraded from pesticide-treated seed and contaminate adjacent bee-attractive off-crop areas. This study quantified the risk to native bees of dust released during sowing of Brazilian crop seeds treated with a thiamethoxam formulation (Cruiser 350FS). To address toxicity to native bees, adult acute contact LD50 data for thiamethoxam were collated from the literature, a species sensitivity distribution generated, and the HD5 calculated. The LD50 HD5 was used to refine the default safety factor applied to the honeybee acute contact LD50 from 10 to 5.45 for thiamethoxam. Crop-specific abraded dust data (Heubach dust and Heubach AI) were generated for seeds treated with Cruiser 350FS sourced from on-farm and industrial facilities. The mean Heubach dust levels was ranked as cotton = maize > sunflower = soybean > drybean. There was no correlation between the measured residues of thiamethoxam (Heubach AI) and those estimated in dust based on the thiamethoxam content of Cruiser 350FS. A hazard quotient (HQ) for each crop (based on application rate, the default dust deposition factor, and the honeybee contact LD50/10) identified risks during sowing for all crops. Refinement of the application rate with the measured 90th percentile Heubach dust (assuming 100% thiamethoxam) resulted in sowing of industrially treated soybean and on-farm treated cotton being identified as risks. Further refinement using either the measured 90th percentile Heubach AI or the acute contact LD50 (HD5 ) resulted in sowing of all crops treated with Cruiser 350FS as being identified as low risk. Similar high quality seed treatment should be demonstrated for other formulations containing insecticides with high toxicity to bees. Data on dust drift from machinery and crops more representative of those in Brazil may allow further refinement of the default dust deposition value of 17% used in this study. Integr Environ Assess Manag 2023;19:1361-1373. © 2023 SETAC.
Collapse
Affiliation(s)
- Helen M Thompson
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, UK
| | - Ana Cione
- Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil
| | - Mario Paniago
- Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil
| | - Mariana Artal
- Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil
| | - José S Veiga
- Syngenta Seedcare Institute, Holambra, São Paulo, Brazil
| | | | | |
Collapse
|
22
|
Linguadoca A, Jürison M, Hellström S, Straw EA, Šima P, Karise R, Costa C, Serra G, Colombo R, Paxton RJ, Mänd M, Brown MJF. Intra-specific variation in sensitivity of Bombus terrestris and Osmia bicornis to three pesticides. Sci Rep 2022; 12:17311. [PMID: 36243795 PMCID: PMC9569340 DOI: 10.1038/s41598-022-22239-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
There is growing evidence that pesticides may be among the causes of worldwide bee declines, which has resulted in repeated calls for their increased scrutiny in regulatory assessments. One recurring concern is that the current frameworks may be biased towards assessing risks to the honey bee. This paradigm requires extrapolating toxicity information across bee species. Most research effort has therefore focused on quantifying differences in sensitivity across species. However, our understanding of how responses to pesticides may vary within a species is still very poor. Here we take the first steps towards filling this knowledge gap by comparing acute, lethal hazards in sexes and castes of the eusocial bee Bombus terrestris and in sexes of the solitary bee Osmia bicornis after oral and contact exposure to the pesticides sulfoxaflor, Amistar (azoxystrobin) and glyphosate. We show that sensitivity towards pesticides varies significantly both within and across species. Bee weight was a meaningful predictor of pesticide susceptibility. However, weight could not fully explain the observed differences, which suggests the existence of unexplored mechanisms regulating pesticide sensitivity across bee sexes and castes. Our data show that intra-specific responses are an overlooked yet important aspect of the risk assessment of pesticides in bees.
Collapse
Affiliation(s)
- Alberto Linguadoca
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School for Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
- Pesticide Peer Review Unit, European Food Safety Authority (EFSA), via Carlo Magno 1A, 43126, Parma, Italy
| | - Margret Jürison
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | - Sara Hellström
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edward A Straw
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School for Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Peter Šima
- Department of R&D, Koppert s.r.o., Nové Zámky, Slovakia
| | - Reet Karise
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128, Bologna, Italy
| | - Giorgia Serra
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128, Bologna, Italy
| | - Roberto Colombo
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128, Bologna, Italy
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marika Mänd
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mark J F Brown
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School for Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| |
Collapse
|
23
|
Rondeau S, Baert N, McArt S, Raine NE. Quantifying exposure of bumblebee (Bombus spp.) queens to pesticide residues when hibernating in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119722. [PMID: 35809712 DOI: 10.1016/j.envpol.2022.119722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pesticides is a major threat to bumblebee (Bombus spp.) health. In temperate regions, queens of many bumblebee species hibernate underground for several months, putting them at potentially high risk of exposure to soil contaminants. The extent to which bumblebees are exposed to residues in agricultural soils during hibernation is currently unknown, which limits our understanding of the full pesticide exposome for bumblebees throughout their lifecycle. To generate field exposure estimates for overwintering bumblebee queens to pesticide residues, we sampled soils from areas corresponding to suitable likely hibernation sites at six apple orchards and 13 diversified farms throughout Southern Ontario (Canada) in fall 2019-2020. Detectable levels of pesticides were found in 65 of 66 soil samples analysed for multi-pesticide residues (UPLC-MS/MS). A total of 53 active ingredients (AIs) were detected in soils, including 27 fungicides, 13 insecticides, and 13 herbicides. Overall, the frequency of detection, residue levels (median = 37.82 vs. 2.20 ng/g), and number of pesticides per sample (mean = 12 vs. 4 AIs) were highest for orchard soils compared to soils from diversified farms. Ninety-one percent of samples contained multiple residues (up to 29 different AIs per sample), including mixtures of insecticides and fungicides that might lead to synergistic effects. Our results suggest that when hibernating in agricultural areas, bumblebee queens are very likely to be exposed to a wide range of pesticide residues in soil, including potentially harmful levels of insecticides (e.g., cyantraniliprole up to 148.82 ng/g). Our study indicates the importance of empirically testing the potential effects of pesticide residues in soils for hibernating bumblebee queens, using field exposure data such as those generated here. The differences in potential exposure that we detected between cropping systems can also be used to better inform regulations that govern the use of agricultural pesticides, notably in apple orchards.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Ontario, Canada.
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Scott McArt
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
24
|
Boff S, Keller A, Raizer J, Lupi D. Decreased efficiency of pollen collection due to Sulfoxaflor exposure leads to a reduction in the size of bumble bee workers in late European summer. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.842563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bumble bees (Bombus terrestris) are important pollinators of wild and crop plants. Despite their importance in the process of fruit and seed production on crop sites, their activity may be impaired due to exposure to pesticides. This species has a yearly life cycle and colony success may rely on effective foraging of workers on ruderal plants late in summer when most crops are no longer flowering. In the current study, we investigated the effect of chronic exposure to Sulfoxaflor on aspects of the foraging behavior of bumble bees and whether Sulfoxaflor influences the body size of workers of B. terrestris in a crop landscape. We found that 2 weeks of continuous exposure to Sulfoxaflor influenced workers’ foraging dynamics and collection of resources. However, there was no evidence that the 5 ppb dose of the pesticide impacted the ability of bees to handle flowers with different traits. Workers from colonies exposed to Sulfoxaflor were smaller. The effect on worker size may be explained as a consequence of the reduced pollen income per unit of worker foraging. Thus, if the effects of Sulfoxaflor applied directly to crops had the same effect as that observed on commercial bumble bees after our chronic exposure, it might negatively impact colony success due to the impact on pollen collection and the reduction in the size of workers.
Collapse
|